Run Permit System Architecture at the Facility for Rare Isotope Beams

Daron Chabot, Masanori Ikegami, Martin Konrad, Dylan Maxwell

Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 USA

chabot@frib.msu.edu

Background

The Facility for Rare Isotope Beams (FRIB), currently under initial commissioning, accelerates heavy ions up to a beam power of 400kW. Capable of accelerating a wide variety of ion species at variable beam energies, machine protection risks are of significant concern. In one of several efforts to address these risks, a Run Permit System (RPS) is under development and testing.

The primary roles of the RPS are:

• Determine if accelerator state is appropriate to produce beam

- Distribute state-appropriate configuration to dependent systems
- Indicate to dependent systems that beam production may commence or continue

Accelerator State

The scope of the RPS touches upon many systems: Personnel Protection System (PPS), Global Timing System (GTS), Machine Protection System (MPS), Diagnostic instrumentation, and optics power supplies. Given the potential breadth of impact of the RPS, some means of defining and constraining scope was necessary.

The notion of *Machine Modes* and *Beam Modes* are incorporated here, and define the geographic scope of beam propagation as well as the attributes of the produced beam itself (maximum power, timing structure), respectively. The set of accelerator state comprising Machine and Beam Modes, ion species, and charge state are provided by the RPS user interface and form the *keys* to a database query which returns the curated hardware settings for that state-set.

Table 1: Example FRIB Machine Modes

ID	Description	Beam Modes	
M0	Maintenance (no beam)	B0	
M1	Beam delivery up to linac	B0, B8	
M4	Beam delivery to experimental systems	B0, B1, B2, B5	

Table 2: Example FRIB Beam Modes

ID	Time Structure/Power	Scope
B0	No Beam	Entire machine
B1	CW/10-400 kW	Entire Machine
B8	Variable/2-650 eµA at Faraday Cup	Front End

		🗙 CS-Studio		
ile Edit Se	e <u>a</u> rch <u>C</u> S-Studio Windo	w Help		
🔝 🎦 🕶 🐴 🖇	🛯 🖊 💯 🔗 🔹			😭 🔛 OPI Run
rps_test.op	i 🛛		● 🔍 🔍 🔍	6 🔻 🗇 - 🖙 - 5
State		Beam Moo	de Parameters	
RPS State	STOPPED		High	Low
	Stop	Beam Power	0.500000 W	0.500000 W
RPS Select	Enable	Pulse Freq	1.000000 Hz	1.000000 Hz
Run Permit	۲	Pulse Width	0.100000 s	0.100000 s
RPS Heartbe	at 366			
Mode		Mode Stat	tus	
		Machine Mode		MO
Machine Mo	de MO	Beam Mode		00
Beam Mode	00		85	27 +
lon Species	Ar		37 Rb	
Charge Stat	e +3	M/Q		4.500
		Mass	8	4.8970 amu
	Read		Write	
	PV Name	Value		
	PV1:signal1	1.22		

	PV2:signal2.DRVH	2.33	
	PV3.signal3	ENABLED	
	PV4.signal4	MASKED	
	1		<u> </u>
- chabot]		
			1.

Figure 2: RPS user interface, CS-Studio

state to obtain suitable parameters for distribution to the hardware. The parameters include power supply range limits, diagnostic device alarm limits or device in-beam/out-of-beam state, and which MPS sensors should be masked off.

query a database using the current set of *accelerator*

A query failure, or any failure in device parameter distribution will obstruct any state transitions until the logged failure is addressed by operational staff.

Figure 4: Data flow between RPS and sub-systems

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of **Nuclear Physics.**