Keyword: instrumentation
Paper Title Other Keywords Page
MOPB015 Trapped Flux Surface Resistance Analysis for Different Surface Treatments cavity, niobium, resonance, superconductivity 115
 
  • M. Martinello, M. Checchin, A. Grassellino, O.S. Melnychuk, S. Posen, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • M. Checchin
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • J. Zasadzinski
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by the US Department of Energy, Office of High Energy Physics
The trapped flux surface resistance is one of the main contributions on cavity losses which appears when cavities are cooled in presence of external magnetic field. The study is focused on the understanding of the different parameters which determine the trapped flux surface resistance, and how this change as a function of different surface treatments. The study is performed on 1.3 GHz niobium cavities processed with different surface treatments after the 800 C bake: electro-polishing (EP), 120 C baking, and N-doping varying the time of the Nitrogen exposure. The trapped flux surface resistance normalized for the trapped magnetic flux is then analyzed as a function of the mean free path in order to find the surface treatment which minimized the trapped flux sensitivity.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB023 Detectors Sensing Second Events Induced by Thermal Quenches of SRF Cavities in He II SRF, cavity, detector, diagnostics 135
 
  • M. Fouaidy, F. Dubois, D. Longuevergne, O. Pochon, J.-F. Yaniche
    IPN, Orsay, France
 
  SRF bulk Nb cavities are often limited by quench due to anomalous losses (heating due normal defects or Field Emission). We continued R&D on Quench Detectors (QD) activity for locating quench in SRF cavities via 2nd sound in superfluid helium. We investigated 2 kinds of QD: Capacitive OST (COST) and Low Response time resistive Thermometers (LRT). A test stand operating in LHe (Temperature: T0) was used for the characterization of the QD by means of precise experimental simulation of SRF cavity quench (pulsed heat flux qP). For improving spatial resolution of QD, smaller COSTs were developed and tested. We investigated the dynamic response of QD as function of different parameters (heater size/geometry, T0, qP) and data are reported. Further, a 2nd Sound Resonator (SSR), with a pair of COSTs at its 2 extremities as 2nd Sound Generator (SSG) and Detector (SSD) respectively and housing also a low heat capacity heater (SSG) and a LRT (SSD) assembly was developed. The first experimental data obtained, with SSR operated in resonating mode or in a shock wave mode are presented. The results concerning locating of quenches in QWR and spoke cavities are discussed.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB077 Vertical Tests of XFEL 3rd Harmonic Cavities cavity, vacuum, HOM, operation 306
 
  • D. Sertore, M. Bertucci, A. Bosotti, J.F. Chen, C.G. Maiano, P. Michelato, L. Monaco, M. Moretti, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI), Italy
  • A. Matheisen, M. Schmökel
    DESY, Hamburg, Germany
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  The 10 cavities of the EXFEL 3rd Harmonic Cryomodule have been tested and qualified, before integration in the He-tank, in our upgraded Vertical Test stand. In this paper, we report the measured RF performance of these cavities together with the main features of the test facility.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB004 Vertical Cavity Test Facility at Fermilab cavity, controls, experiment, SRF 534
 
  • O.S. Melnychuk, A. Grassellino, F.L. Lewis, J.P. Ozelis, R.V. Pilipenko, Y.M. Pischalnikov, O.V. Pronitchev, A. Romanenko, D.A. Sergatskov, B. Squires
    Fermilab, Batavia, Illinois, USA
 
  After a recent upgrade, the vertical test facility for SRF cavities at Fermilab features a low level RF system capable of testing 325MHz, 650MHz, 1.3GHz, and 3.9GHz cavities, helium liquefying plant, three test cryostats, and the interlock safety system. The cryostats can accommodate measurements of multiple cavities in a given cryogenic cycle in the range of temperatures from 4.2K to 1.4K. We present a description of the components of the vertical test facility. We also discuss cavity instrumentation that is used for diagnostics of cavity ambient conditions and quench characterization.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB106 First HIE-ISOLDE Cryo-module Assembly at CERN cavity, vacuum, pick-up, insertion 874
 
  • M. Therasse, G. Barlow, S. Bizzaglia, J.A. Bousquet, A. Chrul, P. Demarest, J-B. Deschamps, J.A. Ferreira Somoza, J. Gayde, M. Gourragne, A. Harrison, G. Kautzmann, D. Mergelkuhl, V. Parma, M. Struik, W. Venturini Delsolaro, L.R. Williams, P. Zhang
    CERN, Geneva, Switzerland
  • J. Dequaire
    Intitek, Lyon, France
 
  The first phase of the HIE-ISOLDE project aims to increase the energy of the existing REX ISOLDE facilities from 3MeV/m to 5MeV/m. It involves the assembly of two superconducting cryo-modules based on quarter wave resonators made by niobium sputtered on copper. The first cryo-module was installed in the linac in May 2015 followed by the commissioning. The first beam is expected for September 2015. In parallel the second cryo-module assembly started. In this paper, we present the different aspects of these two cryo-modules including the assembly facilities and procedures, the quality assurance and the RF parameters (cavity performances, cavity tuning and coupling).  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB110 LCLS-II 1.3 GHz Design Integration for Assembly and Cryomodule Assembly Facility Readiness at Fermilab cryomodule, cavity, vacuum, alignment 893
 
  • T.T. Arkan, C.M. Ginsburg, Y. He, J.A. Kaluzny, Y.O. Orlov, T.J. Peterson, K. Premo
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE
LCLS-II is a planned upgrade project for the linear coherent light source (LCLS) at Stanford Linear Accelerator Center (SLAC). The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Both Fermilab and Jefferson Lab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications. After prototype cryomodule tests, both laboratories will increase cryomodule production rate to meet the challenging LCLS-II project installation schedule requirements of approximately one cryomodule per month per laboratory. This paper presents the 1.3 GHz CW cryomodule design integration for assembly at Fermilab, Fermilab Cryomodule Assembly Facility (CAF) infrastructure modifications for the LCLS-II cryomodules, and readiness for the required assembly throughput.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB091 Mechanical Design of a High Power Coupler for the PIP-II 325 MHz SSR1 RF Cavity vacuum, cavity, status, cryomodule 1354
 
  • O.V. Pronitchev, S. Kazakov
    Fermilab, Batavia, Illinois, USA
 
  The Project X Injector Experiment (PXIE) at Fermilab will include one cryomodule with eight 325 MHz single spoke superconductive cavities (SSR1). Each cavity requires approximately 2 kW CW RF power for 1 mA beam current operation. A future upgrade will require up to 8 kW RF power per cavity. Fermilab has designed and procured ten production couplers for the SSR1 type cavities. Status of the 325 MHz main coupler development for PXIE SSR1 cryomodule is reported.  
poster icon Poster THPB091 [1.821 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)