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Abstract

We apply the Venturini-Reiser envelope-dispersion
equations [1] to a continuous beam in a uniform focus-
ing/bending lattice to study the combined effects of linear
dispersion and space charge. Within this simple model we
investigate the scaling of average dispersion and the effects
on beam dimensions; we also introduce a generalization of
the space-charge intensity parameter defined in [2] and ap-
ply it to the University of Maryland Electron Ring (UMER)
and other machines. In addition, we present results of cal-
culations to test the smooth approximation by solving the
Venturini-Reiser original equations and also through simu-
lations with the code ELEGANT [3].

INTRODUCTION

The combined effects of dispersion and space charge in
circular accelerators are relevant especially to hadron ma-
chines. Examples of these are the proton storage rings
for spallation neutron sources and the heavy-ion rings en-
visioned as drivers for heavy-ion fusion. One important
issue, as in most high-energy machines, is the control of
beam size and excursions to minimize beam degradation
and avoid particle losses that lead to machine activation.

The problem of linear dispersion in the presence of
strong space charge in continuous, i.e. unbunched, coasting
beams has been addressed by Venturini and Reiser [1] and,
independently, by Lee and Okamoto [4]. Both papers lead
to generalized envelope-dispersion equations that differ in
details of the emittance terms. With dispersion, the stan-
dard RMS emittance is not conserved; although the change
is ordinarily very small, a new generalized conserved emit-
tance can be defined that permits also the generalization of
the RMS envelope equations. The new envelope-dispersion
equations in the Venturini-Reiser theory (V-R equations for
short) have been used by a number of authors to study dis-
persion matching, resonances, and halo formation [5].

In this paper, we revisit the uniform focusing/dispersion
approximation of the V-R equations to investigate the de-
pendence of average dispersion and beam dimensions on
beam current and RMS fractional momentum error. De-
tails of the derivations and additional calculations and gen-
eral considerations will appear in a separate paper [6]. We
apply the theory to beam transport with strong space charge
at the University of Maryland Electron Ring (UMER) [7]
and compare the results with solutions of the V-R equations
and calculations with the code ELEGANT [3].
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SMOOTH APPROXIMATION
OF THE V-R EQUATIONS

The uniform focusing approximation is a very useful de-
sign and theoretical tool for studying space charge domi-
nated beam transport. The standard theory is discussed in
its simplest form in [2], without including the effects of
bending and energy spread, i.e. dispersion. In a similar
way, it’s straightforward to derive a set of algebraic equa-
tions for the average dispersion D and the beam semi-axes
dimensions, a and b, from the envelope-dispersion equa-
tions in the V-R theory [1, 5, 6]:
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where K is the generalized beam perveance [2], ρ is
the average machine radius, kx0,y0 represent external fo-
cusing (constants in the smooth approximation), Δ ≡√〈(δp/p0)2〉 is the RMS fractional momentum error or
spread, a, b stand for the horizontal (bending plane) and
vertical 2×RMS semi-axes dimensions, respectively, of an
equivalent K-V beam [2], and εx,y are the 4×RMS un-
normalized transverse emittances. Two major assumptions
are made in deriving Eqs. 1-3: the emittances εx,y are
conserved, and the beam envelope and dispersion func-
tions are RMS-matched. We emphasize also that the term
(1 − 4Δ2D2/a2) that appears in the emittance part of Eq.
2 is important as it permits to obtain the correct beam size
in the limit of zero current with non-zero dispersion [6].

From Eqs. 1-3, if a ∼= b, εx = εy , kx0 = ky0 ≡ k0,
it’s possible to write an (implicit) expression for a2, the
horizontal beam semi-axis squared:

a2 =
a2
0

ηxΔ
+ 4Δ2D2, ηxΔ ≡

√
1 − 2K

a(a + b)k2
0

, (4)

where a0 ≡ √
εx/k0 is the horizontal beam radius in the

limits of zero-current and zero-momentum error. In the
limit of small momentum error but arbitrary space charge,
the quantity ηxΔ reduces to the standard incoherent space
charge tune depression (horizontal plane) that we denote
by “η”. In the same limit of small Δ we have D ∼= D0/η2

(see Eq. 1 and Eq. 4, right-hand side).
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An approximation for a2 can be easily derived if we ig-
nore the term (1 − 4Δ2D2/a2) in the denominator of the
emittance part of Eq. 2; this would be justified only for
space charge dominated transport. The result, from Eq. 2,
is:

a2

a0
2
∼= 1 − η2

2η
+

ξ0
2

2η2
+

√(
1 − η2

2η
+

ξ0
2

2η2

)2

+ 1, (5)

where ξ0 ≡ 2D0Δ/a0. The expression (1−η2)/2η can be
recognized as the parameter “u” defined in [2].

The approximation in Eq. 5 overestimates the effect on
beam radius when both space charge and momentum error
are significant (η <∼ 0.3, Δ >∼ 1%) and underestimates the ef-
fect for small current. However, the results are accurate
within 10% or better [of the exact result from Eqs. 1-3]
over a fair range of momentum errors and space charge.

DISPERSION AND SPACE CHARGE IN
UMER AND OTHER MACHINES

UMER is a low energy (10 keV), high current (0.6-100
mA) electron storage ring with long bunches (100 ns or
about half the ring circumference) and a high density of
short magnetic quadrupoles (72) in a 11.52-m circumfer-
ence. Beam transport in UMER is also made possible by
36 short magnetic dipoles and the earth’s magnetic field.
These features allow us to inject beams in a single turn with
calculated incoherent space charge tune shifts of the order
of an integer or larger values at typical operating points.

Table I contains basic parameters for a number of beams
used in UMER. The operating point is ν0x = ν0y = 6.37,
and the assumed RMS fractional momentum error is Δ =
0.01 in all cases except 6.0* mA, for which Δ = 0.015.
The last three columns are based on exact solutions of
the smooth approximation (SA) Eqs. 1-3 for the average
horizontal beam semi-axis dimension (normalized to either
the zero-current value a0 or the full-current value -without
dispersion- aS) and the average dispersion D normalized to
D0. The parameter tabulated in the last column is defined
by:

χD ≡ ξ0

ξ
=

(
D0

D

) (
a

a0

)
. (6)

which we introduce as a possible dispersion-space charge
intensity parameter. For UMER, we have D0 = ρ/ν2

0 =
0.045 m, and a0(mm) = 0.54×ε0.5(μm).

In Figure 1 we plot the results of approximate SA cal-
culations of a/a0 as a function of tune depression based
on Eq. 5, and indicate the UMER beams by their currents.
The latter points are obtained from Eqs. 1-3 (exact within
the SA approximation). The point labeled “6 mA*” on
the curve for ξ0 = 0.60 is possible if we adjust both the
emittance and the momentum error (Δ = 0.015) to yield
ξ0 = 0.60 and η = 0.50 while keeping other parameters
the same as for the standard transport of 6 mA in UMER.
This example illustrates that reducing transverse emittance

Table 1: Basic Parameters in UMER and Results of SA Cal-
culations from Eqs. 1-3. The emittances are 4×RMS, un-
normalized. See text for additional details.

Curr. (mA), Tune D0/a0, a/a0, χD

Emitt. (μm) Dep. D/D0 a/aS

0.0, 8.05 1.00 30, 1.0 1.16, 1.16 1.16
0.6, 8.05 0.85 30, 1.3 1.30, 1.20 1.03
6.0, 26.2 0.62 16.5, 2.1 1.40, 1.10 0.65
6.0*, 17.2 0.50 20, 2.2 1.78, 1.26 0.82
21, 30.2 0.30 15, 4.6 2.02, 1.11 0.44
104, 64.4 0.14 10.5, 10.4 2.83, 1.06 0.27

Figure 1: Approximate normalized horizontal beam semi-
axis length as a function of standard tune depression (see
Eq. 5) for four values of the parameter ξ0 = 2D0Δ/a0,
with Δ = 0.0 (red dashed line) and Δ = 0.01 (three cases);
all cases include full space charge. For comparison, the
points with labels represent exact results from Eqs. 1-3.

of a beam without at the same time controlling the momen-
tum error spread can lead to a significant increase on the
average beam dimension in the bending plane. Also note-
worthy from Table 1, the average dispersion can grow by
a factor of 2 or larger with significant space charge (small
tune depression), and the average beam dimension in the
bending plane can be from 10% to 20% larger than the ex-
pected value from space charge alone.

Also shown in Fig. 1 are two special points, one cor-
responding to a typical proton storage ring for a spallation
neutron source (e.g. SNS at Oak Ridge Natl. Lab.) and the
other representing a ring envisioned for a heavy-ion fusion
(HIF) driver. Although the effects of dispersion and space
charge on the average beam radius for the SNS ring are not
entirely negligible (Δ � 10−2), we obtain χD � 1.0. By
contrast, the ring envisioned for HIF has χD � 0.8, even
after assuming a stringent Δ � 10−4.

NUMERICAL TESTS

We have solved the original differential equations of
the V-R theory [1] for the beam’s envelope and dispersion
functions to test the smooth approximation results in four
cases (see Table I): 0.0, 0.6, 6.0 and 21 mA. In addition, we
have employed the code ELEGANT [3] using an approxi-
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Figure 2: (a) and (b): Dispersion functions with space charge for 0.0, 0.6 and 6.0 mA at 10 keV over 2 turns in UMER
from ELEGANT code. The solid dark lines represent results from the smooth approximation (Eqs. 1-3), while the
broken lines indicate results from the V-R differential equations. (c) Dispersion functions (ELEGANT, solid curve; V-R
equations, dotted curve) with space charge for 0.6 mA, Δ = 0.01 over one turn in UMER.

mate model of space charge to track up to 250K particles
over two turns (72 FODO periods) in an idealized UMER
lattice. Details of the model for the magnets and the space
charge in ELEGANT can be found in [6] and [8].

For approximate matching of envelopes and dispersion,
we manually adjust D(0), D′(0), starting with D(0) equal
to the SA value. For the initial envelope sizes and slopes,
on the other hand, we start with values obtained with
TRACE3D [9]. Figures 2a-b show examples of calcula-
tions of dispersion in ELEGANT; also shown are lines indi-
cating average values from the smooth approximation and
the solutions of the V-R differential equations. Figure 2c
shows a comparison of dispersion functions in ELEGANT
and the numerical solution of the V-R equations.

All calculations yield a significantly larger average dis-
persion for a combination of small Δ (<∼ 0.002) and large
current; e.g. D = 0.47 m for Δ = 0.001 at 21 mA (EL-
EGANT and SA), D = 0.40 m (V-R Equations). How-
ever, the product DΔ, which is the RMS change in the
x-coordinate (RMS orbit displacement) of beam particles
relative to the reference orbit, is only about 0.5 mm. As ex-
pected, for Δ = 0.001 the effect on the average beam hori-
zontal dimension is also small, a/aS = 1.004, compared to
a/aS = 1.11 for Δ = 0.01 (see Table I).

To summarize the results, for low current (0.6 mA or
less) and Δ = 0.001-0.01, the smooth approximation (SA)
predicts an average dispersion that agrees well with both
ELEGANT calculations and solutions of the envelope-
dispersion equations of the V-R theory. For space charge
dominated transport around 6 mA, we obtain fair agree-
ment among the three approaches for estimating average
dispersion, also in the range Δ = 0.001-0.01. At larger cur-
rent (21 mA), however, there’s agreement between SA and
ELEGANT only for small Δ=0.001; for larger momentum
errors, SA yields values of average dispersion that are sig-
nificantly larger (>∼ 30%) than those from ELEGANT or the
V-R equations. As for the average beam horizontal dimen-
sion, the V-R equations yield values that are always larger
(10-20%) than SA results, while ELEGANT predicts val-
ues that fall between V-R and SA.

Although the model of smooth focusing/dispersion dis-
cussed would no be obviously applicable to short bunches
or to the case of strong correlation of momentum spread
with bunch’s slice, we can still apply it to the core of the
bunch, or, in an ad hoc way, to the whole bunch in an aver-
age sense. In UMER, the actual uncorrelated energy spread
may correspond closer to Δ = 0.002 for low current and
Δ = 0.005 for high current, but we have chosen to do cal-
culations with Δ = 0.01 to enhance the effects of disper-
sion and because this figure corresponds closely to the cor-
related energy spread. Much work remains to be done in
this area: realistic dispersion-envelope matching involving
a bending element before injection into UMER, 6D treat-
ment of dispersion with space charge (bunched beams),
improved calculations in ELEGANT, and by-the-turn mea-
surements of beam size, emittance, and energy spread.

We acknowledge Max Cornacchia’s expert assistance on
the use of the code ELEGANT as well as many useful dis-
cussions on circular machine physics. We also benefited
from discussions with Marco Venturini and Dave Sutter.
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