Author: Pira, C.
Paper Title Page
SUPCAV005 Current Status of the ALPI Linac Upgrade for the SPES Facilities at INFN LNL 11
 
  • A. Tsymbaliuk, D. Bortolato, F. Chiurlotto, E. Chyhyrynets, G. Keppel, E. Munaron, C. Pira, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • E. Chyhyrynets
    Università degli Studi di Padova, Padova, Italy
  • A. Tsymbaliuk
    UNIFE, Ferrara, Italy
 
  The SPES project is based at INFN LNL and covers basic research in nuclear physics, radionuclide production, materials science research, nuclear technology and medicine. The Radioactive Ion Beam (RIB) produced by SPES will be accelerated by ALPI, which is a linear accelerator, equipped with superconducting quarter wave resonators (QWRs) and operating at LNL since 1990. For RIB acceleration it is mandatory to perform an upgrade of ALPI which consists of the implementation of two additional cryostats, containing 4 accelerating cavities each, in the high-ß section. The QWRs production technology is well established. The production technology of Nb/Cu QWRs should be adjusted for high-ß cavities production. In the framework of the upgrade, several vacuum systems were refurbished, optimal parameters of the biased sputtering processes of copper QWR cavities and plates were defined. The process of mechanical and chemical preparation, sputtering and cryogenic measurement of the high-ß Nb/Cu QWR cavities were adjusted. Several QWR cavities were already produced and measured. Currently, the production of the Nb/Cu sputtered QWR cavities and plates is ongoing.  
poster icon Poster SUPCAV005 [0.943 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV005  
About • Received ※ 21 June 2021 — Revised ※ 07 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 29 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPCAV007 Thick Film Morphology and SC Characterizations of 6 GHz Nb/Cu Cavities 18
 
  • V.A. Garcia Diaz, O. Azzolini, E. Chyhyrynets, G. Keppel, C. Pira, F. Stivanello, M. Zanierato
    INFN/LNL, Legnaro (PD), Italy
  • E. Chyhyrynets
    Università degli Studi di Padova, Padova, Italy
  • D. Fonnesu
    CERN, Meyrin, Switzerland
  • O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Vogel
    University Siegen, Siegen, Germany
 
  Funding: European Union’s H2020 Framework Programme under Grant Agreement no. 764879
Thick films deposited in long pulse DCMS mode onto 6 GHz copper cavities have demonstrated the mitigation of the Q-slope at low accelerating fields. The Nb thick films (~40 microns) show the possibility to reproduce the bulk niobium superconducting properties and morpholo-gy characterizations exhibited dense and void-free films that are encouraging for the scaling of the process to 1.3 GHz cavities. In this work a full characterization of thick films by DC magnetometry, computer tomography, SEM and RF characterizations are presented.
 
poster icon Poster SUPCAV007 [1.012 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV007  
About • Received ※ 21 June 2021 — Revised ※ 07 July 2021 — Accepted ※ 16 February 2022 — Issue date ※ 08 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPFDV006 Investigation of SIS Multilayer Films at HZB 72
 
  • D.B. Tikhonov, S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • S.B. Leith, M. Vogel
    University Siegen, Siegen, Germany
 
  Funding: The manufacture of the QPR samples received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730871
The systematic study of multilayer SIS films (Superconductor-Insulator-Superconductor) is being conducted in Helmholtz-Zentrum Berlin. Such films theoretically should boost the performance of superconducting cavities, and reduce some problems related to bulk Nb such as magnetic flux trapping. Up to now such films have been presented in theory, but the RF performance of those structures have not been widely studied. In this contribution we present the results of the latest tests of AlN-NbN films, deposited on micrometers-thick Nb layers on copper. It has, also, been shown previously at HZB that such SIS films may show some unexpected behavior in surface resistance versus temperature parameter space. In this contribution we continue to investigate those effects with the variation of different parameters of films (such as insulator thickness) and production recipes.
 
poster icon Poster SUPFDV006 [2.234 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPFDV006  
About • Received ※ 21 June 2021 — Revised ※ 09 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 21 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPFDV007 Magnetic Field Penetration of Niobium Thin Films Produced by the ARIES Collaboration 77
 
  • D.A. Turner
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G. Burt, K.D. Dumbell, O.B. Malyshev, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • T. Junginger
    TRIUMF, Vancouver, Canada
  • T. Junginger
    UVIC, Victoria, Canada
  • S.B. Leith, M. Vogel
    University Siegen, Siegen, Germany
  • O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Medvids, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • R. Ries
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
  • E. Seiler
    IEE, Bratislava, Slovak Republic
  • A. Sublet
    CERN, Meyrin, Switzerland
  • J.T.G. Wilson
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Superconducting (SC) thin film coatings on Cu substrates are already widely used as an alternative to bulk Nb SRF structures. Using Cu allows improved thermal stability compared to Nb due to having a greater thermal conductivity. Niobium thin film coatings also reduce the amount of Nb required to produce a cavity. The performance of thin film Nb cavities is not as good as bulk Nb cavities. The H2020 ARIES WP15 collaboration studied the impact of substrate polishing and the effect produced on Nb thin film depositions. Multiple samples were produced from Cu and polished with various techniques. The polished Cu substrates were then coated with a Nb film at partner institutions. These samples were characterised with surface characterisation techniques for film morphology and structure. The SC properties were studied with 2 DC techniques, a vibrating sample magnetometer (VSM) and a magnetic field penetration (MFP) facility. The results conclude that both chemical polishing and electropolishing produce the best DC properties in the MFP facility. A comparison between the VSM and the MFP facility can be made for 10 micron thick samples, but not for 3 micron thick samples.  
poster icon Poster SUPFDV007 [1.064 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPFDV007  
About • Received ※ 21 June 2021 — Accepted ※ 28 October 2021 — Issue date ※ 09 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPTEV002 Application of Plasma Electrolytic Polishing onto SRF Substrates 116
 
  • E. Chyhyrynets, O. Azzolini, R. Caforio, V.A. Garcia Diaz, G. Keppel, C. Pira, F. Stivanello, M. Zanierato
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: Work supported by the INFN CSNV experiment TEFEN. This project has received funding from the Euro-pean Union’s Horizon 2020 Research and Innovation programme under GA No 101004730.
A new promising approach of SRF substrates surface treatment has been studied - Plasma Electrolytic Polishing (PEP). The possible application of PEP can be used not only on conventional elliptical resonators, but also on other components of SRF such as, for example, couplers or Quadrupole resonators (QPRs). However, SRF application of PEP represents a challenge since it requires a different approach to treat the inner surface of elliptical cavities respect to electropolishing. In this work, the main problematics and possible solutions, the equipment, and the polishing system requirements will be shown. A proposed polishing system for 6 GHz elliptical cavities and QPRs will be shown and discussed.
 
poster icon Poster SUPTEV002 [2.715 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPTEV002  
About • Received ※ 21 June 2021 — Revised ※ 08 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 22 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
SUPTEV003 Cu/Nb QPR Surface Preparation Protocol in the Framework of ARIES Project 121
 
  • E. Chyhyrynets, O. Azzolini, R. Caforio, V.A. Garcia Diaz, G. Keppel, C. Pira, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: Work supported by the INFN CSNV experiment TEFEN. This project has received funding from the European Union’s Horizon 2020 Research and Innovation Pro-gramme under Grant Agreement no. 730871.
The Quadrupole Resonator is a powerful tool for SRF R&D on thin films. It allows to perform Q vs E measurements on flat sample rather than a curved surface of a cavity. For the investigation of SC coatings on copper substrates, e-beam welded Cu/Nb samples have been prepared for the QPR. However, the presence of two metals, in particular at the interface makes proper polishing of both surfaces challenging due the different chemical behaviour of both components. In this work we present the protocol developed for surface preparation of the coexisting Cu and Nb phases and the results obtained for 5 different samples. The work was performed in the framework of the ARIES project.
 
poster icon Poster SUPTEV003 [2.511 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPTEV003  
About • Received ※ 21 June 2021 — Revised ※ 08 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 27 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPCAV003 1.3 GHz Seamless Copper Cavities via CNC Spinning Technique 440
 
  • F. Sciarrabba, O. Azzolini, G. Keppel, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • I. Calliari, R. Guggia, L. Pezzato, M. Pigato
    UNIPD, Padova, Italy
 
  The spinning process is an established technology for the production of seamless resonant cavities. The main drawback is that, so far, a manual process is adopted, so the quality of the product is subject to the worker’s skills. The Compute Numerical Controlled (CNC) applied to the spinning process can be used to limit this problem and increase the reproducibility and geometrical accuracy of the cavities obtained. This work reports the first 1.3 GHz SRF seamless copper cavities produced by CNC spinning at the Laboratori Nazionali di Legnaro of INFN. For this purpose, metrological analysis were conducted to verify the geometrical accuracy of the cavities after different steps of forming and thermal treatments; axial profile and wall thickness measurements were carried out, investigating different zones of the cavity profile. The cavities were also characterized through mechanical and microstructural analysis, to identify the effect of the automatic forming process applied to the production process of the 1.3 GHz SRF seamless copper cavities.  
poster icon Poster TUPCAV003 [1.030 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV003  
About • Received ※ 21 June 2021 — Revised ※ 12 July 2021 — Accepted ※ 23 August 2021 — Issue date ※ 24 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPCAV006 Nb3Sn Films Depositions from Targets Synthesized via Liquid Tin Diffusion 452
 
  • M. Zanierato, O. Azzolini, E. Chyhyrynets, V.A. Garcia Diaz, G. Keppel, C. Pira, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
 
  The deposition of Nb3Sn on copper cavities is inter-esting for the higher thermal conductivity of copper compared to common Nb substrates. The better heat exchange would allow the use of cryocoolers reducing cryogenic costs and the risk of thermal quench [1]. Magnetron sputtering technology allows the deposi-tion of Nb3Sn on substrates different than Nb, however the coating of substrates with complex geometry (such as elliptical cavities) may require targets with non-planar shape, difficult to realize with classic powder sintering techniques. In this work, the possibility of using the Liquid Tin Diffusion (LTD) technique to produce sputtering targets is explored. The LTD tech-nique is a wire fabrication technology, already devel-oped in the past at LNL for SRF applications [2], that allows the deposition of very thick and uniform coat-ing on Nb substrates even with complex geometry [3]. Improvements in LTD process, proof of concept of a single use LTD target production, and characterization of the Nb3Sn film coated by DC magnetron sputtering with these innovative targets are reported in this work.  
poster icon Poster TUPCAV006 [5.037 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV006  
About • Received ※ 21 June 2021 — Revised ※ 12 July 2021 — Accepted ※ 23 August 2021 — Issue date ※ 02 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPFDV007 Main Highlights of ARIES WP15 Collaboration 571
 
  • O.B. Malyshev, P. Goudket, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.Z. Antoine
    CEA-IRFU, Gif-sur-Yvette, France
  • O. Azzolini, E. Chyhyrynets, G. Keppel, C. Pira, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • G. Burt, D.J. Seal, D.A. Turner
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G. Burt, B.S. Sian
    Lancaster University, Lancaster, United Kingdom
  • O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • S.B. Leith, A.Ö. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • A. Medvids, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • R. Ries, E. Seiler
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
  • B.S. Sian
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Sublet, G. Vandoni, L. Vega Cid, W. Venturini Delsolaro, P. Vidal García
    CERN, Meyrin, Switzerland
  • D.A. Turner
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: European Commission’s ARIES collaboration H2020 Research and Innovation Programme under Grant Agreement no. 730871
An international collaboration of research teams from CEA (France), CERN (Switzerland), INFN/LNL (Italy), HZB and USI (Germany), IEE (Slovakia), RTU (Latvia) and STFC/DL (UK), are working together on better understanding of how to improve the properties of superconducting thin films (ScTF) for RF cavities. The collaboration has been formed as WP15 in the H2020 ARIES project funded by EC. The systematic study of ScTF covers: Cu substrate polishing with different techniques (EP, SUBU, EP+SUBU, tumbling, laser), Nb, NbN, Nb3Sn and SIS film deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application of all obtained knowledge on polishing, deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application to the QPR samples for testing the films at RF conditions. The preparation, deposition and characterisation of each sample involves 3-5 partners enhancing the capability of each other and resulting in a more complete analysis of each film. The talk will give an overview of the collaborative research and will be an introduction to the detailed talks given by the team members.
 
poster icon Poster WEPFDV007 [2.013 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPFDV007  
About • Received ※ 19 June 2021 — Accepted ※ 12 February 2022 — Issue date ※ 10 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOTEV06 Plasma Electrolytic Polishing as a Promising Treatment Replacement of Electropolishing in the Copper and Niobium Substrate Preparation for SRF 718
 
  • C. Pira, O. Azzolini, R. Caforio, E. Chyhyrynets, V.A. Garcia, G. Keppel, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
 
  Superconducting radio frequency (SRF) cavities performances strongly depend on the substrate preparation. Currently, the conventional protocol of SRF surface preparation includes electropolishing (EP) as the main treatment achieving low roughness, clean and non-contaminated surfaces, both for bulk Nb and Cu substrates. Harsh and non-environmentally friendly solutions are typically used: HF and H2SO4 mixture for Nb, and H3PO4 with Butanol mixtures for EP of Cu. This research is focused on the application of a relatively new technique "Plasma Electrolytic Polishing" (PEP) for the SRF needs. PEP technology is an evolution of EP with a list of advantages that SRF community can benefit from. PEP requires diluted salt solutions moving to a greener approach in respect to EP. PEP can in principle substitute, or completely eliminate, intermediate steps, like mechanical and/or (electro) chemical polishing. Thanks to the superior removing rate in the field (up to 3.5 µm/min of Nb, and 10 µm/min of Cu) in one single treatment roughness below 100 nm Ra has been obtained both for Nb and Cu. In the present work a proof of concept is shown on Nb and Cu planar samples.  
slides icon Slides THOTEV06 [7.202 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THOTEV06  
About • Received ※ 21 June 2021 — Accepted ※ 18 October 2021 — Issue date ※ 01 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROFDV06 Synthesis of Nb and Alternative Superconducting Film to Nb for SRF Cavity as Single Layer 893
 
  • R. Valizadeh, P. Goudket, A.N. Hannah, O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.Z. Antoine
    CEA-DRF-IRFU, France
  • C.Z. Antoine
    CEA-IRFU, Gif-sur-Yvette, France
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • P. Goudket, O.B. Malyshev, D.J. Seal, B.S. Sian, D.A. Turner
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • S.B. Leith, A.Ö. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • A. Medvids, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • D.J. Seal, B.S. Sian, D.A. Turner
    Lancaster University, Lancaster, United Kingdom
  • G.B.G. Stenning
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • A. Sublet, G. Vandoni, L. Vega Cid, W. Venturini Delsolaro, P. Vidal García
    CERN, Meyrin, Switzerland
 
  "Bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavities but for further improvement in cavity RF performance, one may have to turn to films of Nb and to other superconducting materials deposited on copper as thermal and mechanical support. Other materials known as A15, such as Nb3Sn or V3Si and B1 such as NbTiN and NbN are much easier to synthesise in thin films rather than being made as bulk cavity. The potential benefits of using materials other than Nb would be a higher Tc, a potentially higher critical held Hc, leading to potentially significant cryogenics cost reduction if the cavity operation temperature is 4.2 K or higher. We report on optimising deposition parameters and effect of substrate treatment prior to deposition for successful synthesising of Nb and the alternative superconducting thin film with high superconducting properties (Tc and Hsh) on flat substrates and QPR samples in single layer. The DC and RF SC properties have been tested using PPMS and QPR measurements. This work is part of the H2020 ARIES collaboration. We further report on preparation of RF cavities employing these alternative material for future cavity production."  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-FROFDV06  
About • Received ※ 21 June 2021 — Accepted ※ 05 January 2022 — Issue date ※ 28 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)