

CURRENT STATUS OF THE ALPI LINAC UPGRADE FOR THE SPES FACILITIES AT INFN LNL

A. Tsymbaliuk^{1,2}, D. Bortolato¹, F. Chiurlotto¹, E.Munaron¹, C.Pira¹, F. Stivanello¹, E. Chyhyrynets^{1,3}, G. Keppel¹.

¹National Institute for Nuclear Physics, Legnaro National Laboratories (INFN LNL), Italy ²University of Ferrara (UNIFE), Ferrara, Italy ³University of Padua (UNIPD), Padua, Italy

Introduction. The ALPI linac upgrade at LNL, as part of the SPES facility, consists of 2 additional cryostats in the high- β section. As part of this upgrade, the ALPI QWR cavities and plates production and measurement technology was restarted at LNL. The coating and measurement systems were upgraded and 5 QWR cavities were produced and tested.

Nb/Cu high-β QWR and plates production

(b)

(a)

(c)

(a)

^ .	T <i>T</i> :	- f 11	1	

				Baking process					
Substrate surface preparation			Parameter	Cavity	Plate				
	Tumbling	12 hours		Chamber temperature, [°C]	120 - 200	100 - 120			
	Electropolishing	Solution Butanol)	(H ₃ PO ₄ ,	Substrate tempera ture, [°C]	400 – 450	300 - 350			
	SUBU	Solution	(Sulfamic	Time, [hours]	72 - 96				
Pre	Preparation	acıd, a citrate.	ammonium butanol.	Sputtering process					
		$H_2O_2)$,	Sputtering	0,1-0,2				
	Passivation	Solution	(sulfamic	pressure, [mbar]					
		acid)		Cathode current,	3,25 - 3,5	12 – 14			
	High Pressure water rinsing								
				Bias voltage, [V]	120 – 130	100 - 120			
				Sputtering cycle time, [min]	15	6			
				Number of cycles	16 – 20	10 - 12			

Fig 1: View of the surface of ALPI QWR cavity after: (a) – machining of the copper substrate; (b) – tumbling; (c) – chemical and electrochemical preparation; (d) – sputtering of the cavity.

Fig 2: View of the QWR coated plates chemical after: and (a) electrochemical preparation; (b) sputtering of the plates.

cavity

300

200

Initial

Superconductive cavity proprieties

Fig 4: O-slope of the ALPI OWRs.

				Cavity	$\mathbf{O}_{\mathbf{n}}$	Eacc	O (at	ΔT
	Power, [W]	15 – 20	Dependance between superconductive properties	N⁰		7W,	7W)	(plate –
	Time, [hours]	1 – 4	and ΔT of the cavity and plate was observed. To			[MV/m]		cavity)
		ТТ	improve the thermal and electrical contact between	Target		>4,5	>E+8	
(h)	PurifiedHeliumgaspressure, [mbar]	5 · 10 ⁻⁵	the cavity and the plate, the mounting system has	DD	1,1E+9	6,7	3,9E+8	1,7
(0)			Within the produced cavities, 2 OWRs overpassed	HB 5	7,6E+8	5,5	2,8E+8	1,66
Fig 3: View of the plate-cavity			target superconductive properties, 1 will be	HB 8	1,5E+8	3,8	1,4E+8	2
assembling system (a) and	Low temperature cavity measurements		remeasured with modified plate – cavity assembling	HB 7	3,2E+8	3,7	1,35E+8	2,8
temperature measurements (b).			system and 2 will be re-sputtered.	HB 6	7,6E+7	2,6	6,7E+7	3,2

Conclusion. Several produced cavities (DD and HB 5) showed appropriate superconductive properties with respect to the

predefined target for ALPI linac. The production processes and low temperature testing technologies of the high-β Nb/Cu ALPI

QWR cavities were confirmed. Deposition and evaluation of the next QWRs for the ALPI upgrade is in progress.