Keyword: flattop
Paper Title Other Keywords Page
TU2A02 Pulsed High Power Klystron Modulators for ESS Linac Based on the Stacked Multi-Level Topology klystron, linac, operation, DTL 359
 
  • C.A. Martins, G. Göransson, M. Kalafatic
    ESS, Lund, Sweden
  • M. Collins
    Lund Technical University, Lund, Sweden
 
  ESS has launched an internal R&D project in view of designing, prototyping and validating a klystron modulator compatible with the requirements based on a novel topology named SML (Stacked Multi-Level). This topology is modular and based on the utilization of High Frequency (HF) transformers. The topology allows for the usage of industrial standard power electronic components at the primary stage at full extent which can easily be placed and wired in a conventional electrical cabinet. It requires only few special components like HF transformers, rectifiers and filters (i.e. passive components) to be placed in an oil tank. This arrangement allows scaling up in average and pulse power to the required levels while keeping the size, cost, efficiency and reliability of the different modules under good control. Besides the very good output pulse power quality, the AC grid power quality is also remarkably high with a line current harmonic distortion below 3%, a unitary power factor and an extremely reduced line voltage flicker below 0.3%. A reduced scale modulator prototype has been built and validated experimentally.  
slides icon Slides TU2A02 [8.596 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TU2A02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC009 IF-Mixture Performance During Cavity Conditioning at STF-KEK cavity, controls, LLRF, feedback 785
 
  • S.B. Wibowo
    Sokendai, Ibaraki, Japan
  • T. Matsumoto, S. Michizono, T. Miura, F. Qiu
    KEK, Ibaraki, Japan
 
  The Superconducting rf Test Facility (STF) at High Energy Accelerator Research Organization (KEK) was built for research and development of the International Linear Collider (ILC). In order to satisfy the stability requirement of the accelerating field, a digital low-level RF (LLRF) control system is employed. In this control system, signal from a cavity is down-converted into intermediate frequency (IF) signal before being digitized by analog-to-digital converter (ADC). In order to reduce the required number of ADCs, we proposed a technique that combines several IFs and to be read by a single ADC. Signal reconstruction of each IF is performed by digital signal processing. The performance of this technique, which is named IF-mixture, is reported in this paper.  
poster icon Poster THPRC009 [0.992 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR038 Resonance Control for Narrow Bandwidth PIP-II Cavities cavity, resonance, SRF, FPGA 936
 
  • W. Schappert, J.P. Holzbauer, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  The PIP-II project at FNAL calls for a SRF pulsed proton driver linac to support the expanding neutrino physics program including DUNE/LBNF. The relatively low beam current and high quality factors called for in the design means that these cavities will be operated with small RF bandwidths, meaning that they will be sensitive to microphonics. Combined with a 20 Hz pulsed operational structure and the use of four different, complex cavity geometries means that resonance control will be extremely challenging. Work is ongoing at FNAL to develop active resonance stabilization techniques using fast piezoelectric tuners in support of PIP-II. These techniques as well as testing and development results using a prototype, dressed low-beta single-spoke cavity will be presented along with an outlook for future efforts.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)