Keyword: cyclotron
Paper Title Other Keywords Page
MOPOST030 Proton Irradiation Site for Si-Detectors at the Bonn Isochronous Cyclotron radiation, proton, site, HOM 130
 
  • D. Sauerland, R. Beck, P.D. Eversheim
    HISKP, Bonn, Germany
  • J. Dingfelder, P. Wolf
    SiLab, Bonn, Germany
 
  The Bonn Isochronous Cyclotron provides proton, deuteron, alpha particle and other light ion beams with a charge-to-mass ratio Q/A of ’ 1/2 and kinetic energies ranging from 7 to 14 MeV per nucleon. At a novel irradiation site, a 14 MeV proton beam with a diameter of a few mm is utilized to homogeneously irradiate silicon detectors, so-called devices under test (DUTs), to perform radiation hardness studies. Homogeneous irradiation is achieved by moving the DUT through the beam in a row-wise scan pattern with constant velocity and a row separation smaller than the beam diameter. During the irradiation procedure, the beam parameters are continuously measured non-destructively using a calibrated, secondary electron emission-based beam monitor, installed at the exit window of the beamline. The diagnostics and the irradiation procedure ensure a homogeneous irradiation with a proton fluence error of smaller than 2 %. In this work, an overview of the accelerator facility is given and the irradiation site with its beam diagnostics is presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST030  
About • Received ※ 08 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST032 A New Approach to Cyclotron Design proton, extraction, cavity, ion-source 133
 
  • O. Karamyshev
    JINR, Dubna, Moscow Region, Russia
 
  Cyclotrons are the oldest type of circular accelerators, with many applications, design of the majority of cyclotrons nowadays follow has become a standard for most of developers, and there is a clear trend for switching towards superconducting magnets to increase the magnet field level and descrease the size and weight. A new approach, described in this paper allowed the author to design a lineup of cyclotrons from 15 to 230 MeV as compact and power efficient as superconducting cyclotrons, but using copper coil.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST032  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST033 Betatron Tune Characterization of the Rutgers 12-Inch Cyclotron for Different Magnetic Poles Configurations focusing, betatron, HOM, experiment 136
 
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
  • B.L. Beaudoin, T.W. Koeth
    UMD, College Park, Maryland, USA
  • M. Miller
    Brown University, Providence, USA
  • T.S. Ponter
    IBA, Louvain-la-Neuve, Belgium
  • K.J. Ruisard
    ORNL, Oak Ridge, Tennessee, USA
  • R. Tesse
    ULB, Bruxelles, Belgium
 
  The Rutgers cyclotron is a small 12-Inch, 1.2MeV proton cyclotron. Sets of magnet pole-tips were designed to demonstrate different cyclotron focusing options: weak focusing, radial sector focusing and spiral sector focusing. The purpose of this paper is to experimentally characterize the transverse dynamics provided by different types of focusing. Magnetic field measurements provide insight into the as-built properties of these magnetic poles configurations. First we discuss the axial betatron tune measurements as a function of the beam energy towards outer radii, which agree well with the values expected from measured magnetic data. Turn-by-turn betatron envelope oscillation measurements are also reported and compared with the tune measurements. Excellent agreement is once again found.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST033  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST039 Algorithm to Mitigate Magnetic Hysteresis in Magnets with Unipolar Power Supplies quadrupole, power-supply, optics, ISAC 156
 
  • J. Nasser, R.A. Baartman, O.K. Kester, S. Kiy, T. Planche, S.D. Rädel, O. Shelbaya
    TRIUMF, Vancouver, Canada
 
  Funding: National Research Council Canada
The effects of hysteresis on the fields produced by magnetic lenses are not accounted for in TRIUMF’s models of the accelerators. Under certain conditions, such as quadrupoles with unipolar power supplies operating at low currents, these effects have introduced significant field errors with consequences upon tranverse tunes. To combat these uncertainties and make the fields more reproducible and stable, a technique new to TRIUMF has been implemented. This technique ramps the current cyclically about the desired setpoint to reach a reproducible field that is independent of its history. Results of magnetic measurements at TRIUMF using this technique are presented, as well as the expected improvements to the accuracy of the beam optics model, particularly for unipolar quadrupoles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST039  
About • Received ※ 03 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIYGD2 The Present Status and Future Plan with Charge Stripper Ring at RIKEN RIBF quadrupole, acceleration, factory, ion-source 796
 
  • H. Imao
    RIKEN Nishina Center, Wako, Japan
 
  RIKEN RI Beam Factory (RIBF), providing the world’s most intense heavy-ion beams more than 345 AMeV, is a leading facility for generating in-flight RI beams. RIBF has been steadily developing its performance after since 2006. In particular, the beam intensity of uranium beams, which is important to produce in-flight fission RI beams, was drastically increased by a factor of 240 compared to 2008. For further intensity upgrade of the uranium beams, the total charge stripping efficiency less than 5% of two strippers, He gas and rotating graphite sheet disk strippers, is a serious bottleneck. A new acceleration scheme with charge stripper rings (CSRs) as a cost-effective way to enhance the charge stripping efficiency has been proposed. The CSR recycles beams other than the selected charge state that was previously dumped. These beams are orbited in the CSR while suppressing emittance growth, and then re-enter the stripper. The CSR is being studied as a future plan, aiming at a 10-fold increase in the intensity of the uranium beams. The present status and the future plan with the CSR at RIBF will be presented.  
slides icon Slides TUIYGD2 [4.735 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIYGD2  
About • Received ※ 13 June 2022 — Revised ※ 19 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK006 Proton Beamline Simulations for the High Intensity Muon Beamline at PSI target, simulation, proton, optics 2036
 
  • M. Haj Tahar, D.C. Kiselev, A. Knecht, D. Laube, D. Reggiani, J. Snuverink, V. Talanov
    PSI, Villigen PSI, Switzerland
 
  The High Intensity Proton Accelerator (HIPA) cyclotron at the Paul Scherrer Institut (PSI) delivers 590 MeV CW proton beam with a maximum power of 1.42 MW. After extraction, the beam is transferred in a 120 m long channel towards two target stations (TgM and TgE) before depositing its remaining power at the spallation target SINQ for neutron production. As part of the High Intensity Muon Beamline (HIMB) feasibility study, which belongs to the IMPACT (Isotope and Muon Production using Advanced Cyclotron and Target technologies) initiative, the first of these targets will be replaced with a thicker one and its geometry opti- mized thereby specifically boosting the emission of surface muons. In order to assess the impact of the changes on the proton beamline, BDSIM/GEANT4 simulations were performed with the realistic technical design of the target insert, the collimation system was redesigned and the power depositions were benchmarked with MCNP6. In this paper, we discuss the major changes and challenges for HIMB as well as the key considerations in redesigning the optics of the high power beam in the vicinity of the target stations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK006  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK016 Studies of ECR Plasmas and Materials Modification Using Low Energy Ion Beam Facility at IUAC plasma, ECR, electron, ion-source 2074
 
  • P. Tripathi, P. Kumar, S.K. Singh
    IUAC, New Delhi, India
 
  The ECR ion sources are widely used to produce high intensities of highly charged positive ions*. To increase their performance further, several techniques are employed. The addition of a lighter gas into the main plasma (so-called gas mixing) shows a substantial effect on the charge state distribution of highly charged ions. Although many theoretical models were used to explain this gas mixing effect, yet it is not fully understood. The low energy ion beam facility (LEIBF) at Inter-University Accelerator Centre (IUAC), New Delhi, India, which comprises a 10 GHz all-permanent magnet NANOGAN ECR source placed on a high voltage platform (400kV) has been used to develop several plasmas for the physical understanding of ions production and their confinement in a strong magnetic field**. Further, the LEIBF allows us to extract ion beams from the plasma in the energy range of a few keV to tens of MeV for novel ion-matter interaction experiments. In this paper, the charge state distribution studies (relevant to gas mixing effect) of various atomic species at optimized ion source tuning parameters along with some interesting results on materials synthesis/modification using ion beams is presented.
*A. G. Drentje, Review of Scientific Instruments 74, 2631 (2003)/ **P. Kumar et al., Pramana 59(5):805-809(2002)/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK016  
About • Received ※ 31 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS005 Lab-Industry Collaboration: Industrialisation of A Novel Non-Interceptive Turn-Key Diagnostic System for Medical Applications cavity, instrumentation, diagnostics, proton 2945
 
  • S. Srinivasan, H. Bayle, E.T. Touzain
    BERGOZ Instrumentation, Saint Genis Pouilly, France
  • D. Bisiach, M. Cargnelutti, K. Roskar
    I-Tech, Solkan, Slovenia
  • P.-A. Duperrex
    PSI, Villigen PSI, Switzerland
 
  A novel non-interceptive beam current monitor prototype was successfully developed to measure the ultra-low beam currents (0.1-10 nA) with a 1 Hz measurement bandwidth at the Paul Scherrer Institute’s (PSI’s) proton radiation therapy facility, PROSCAN. The monitor resonance frequency is tuned to a harmonic of the beam pulse repetition rate, enabling a larger signal-to-noise ratio compared to those of broadband systems. Since the tuned frequency certainly differs for other facilities, such a system requires customisation. To enhance the application of the monitor to a turn-key system, a fast digitiser solution allowing (1 kHz data rate) streaming of measurements to various Control Systems is of importance as well. In this paper, we report on the industrial challenges associated, such as quality, reliability, repeatability and customisability, online monitoring, turn-key system, etc. in manufacturing a working novel prototype from a research environment. A fruitful collaboration between PSI, Bergoz Instrumentation, and Instrumentation Technologies is foreseen to make it happen, from a first-of-a-kind industrialised product to be tested in the lab, to a product line in a catalogue.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS005  
About • Received ※ 31 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS015 New Design of Cyclotron for Proton Therapy cavity, proton, extraction, acceleration 2973
 
  • O. Karamyshev
    JINR, Dubna, Moscow Region, Russia
 
  An innovative approach to a design of cyclotron allows to produce cheaper and more power efficient cyclotrons for medical and industrial application. A design of 230 MeV proton cyclotron for proton therapy, using this approach is presented. The cyclotron is one of the line of cyclotrons from 15 to 230 MeV, that uses same magnet field level and RF frequency and utilises many identical solutions within the lineup to make it cheaper to produce and run.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS015  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS016 A New Design of PET Cyclotron proton, vacuum, acceleration, cavity 2977
 
  • O. Karamyshev
    JINR, Dubna, Moscow Region, Russia
 
  An innovative approach to a design of cyclotron allows to produce cheaper and more power efficient cyclotrons for medical and industrial application. 15 MeV cyclotron for PET (and other) isotopes production are widely used and in very high demand. In this paper a design of a very compact and cheap to build and to run cyclotron is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS016  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS017 MSC230 Superconducting Cyclotron for Proton Therapy proton, cavity, extraction, acceleration 2981
 
  • O. Karamyshev, K. Bunyatov, S. Gurskiy, G.G. Hodshibagijan, G.A. Karamysheva, D. Nikiforov, M.S. Novikov, D. Popov, V.M. Romanov, G. Shirkov, S.G. Shirkov, A.A. Sinitsa, G.V. Trubnikov, S. Yakovenko
    JINR, Dubna, Moscow Region, Russia
  • V.A. Gerasimov, I.D. Lyapin, V. Malinin
    JINR/DLNP, Dubna, Moscow region, Russia
 
  Superconducting cyclotron MSC230 is dedicated for acceleration the proton beam to 230 MeV for medico-biological research. MSC230 is an isochronous four-sector compact cyclotron with a magnetic field in the center of 1.7 T. Acceleration is performed at the fourth harmonic mode of the accelerating radio-frequency (RF) system consisting of four cavities located in the cyclotron valleys. The accelerator will use an internal Penning type source with a hot cathode. Extraction is carried out by an electrostatic deflector located in the gap between sectors and two passive magnetic channels. The current status of the project is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS017  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS022 Production of Radioisotopes for Cancer Imaging and Treatment with Compact Linear Accelerators linac, target, proton, rfq 2996
 
  • M. Vretenar, A. Mamaras
    CERN, Meyrin, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • P. Foka
    GSI, Darmstadt, Germany
 
  Accelerator-produced radioisotopes are widely used in modern medicine, for imaging, for cancer therapy, and for combinations of therapy and diagnostics. Clinical trials are well advanced for several radioisotope-based treatments that might open the way to a strong request of specific accelerator systems dedicated to radioisotope production. While cyclotrons are the standard tool in this domain, we explore here alternative options using linear accelerators. Compared to cyclotrons, linacs have the advantage of modularity, compactness, and reduced beam loss with lower shielding requirements. Although in general more expensive than cyclotrons, linacs are competitive in cost for production of low-energy proton beams, or of intense beams of heavier particles. After a review of radioisotopes of potential interest, in particular those produced with low-energy protons or helium, this paper presents two linac-based isotope production systems. The first is a compact RFQ-based system for PET isotopes, and the second is an alpha-particle linac for production of alpha-emitters. The accelerator systems are described, together with calculations of production yields for different targets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS022  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS024 A Novel Intensity Compensation Method to Achieve Energy Independent Beam Intensity at the Patient Location for Cyclotron Based Proton Therapy Facilities proton, optics, emittance, beam-losses 3004
 
  • V. Maradia, A.L. Lomax, D. Meer, S. Psoroulas, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • V. Maradia
    ETH, Zurich, Switzerland
 
  Funding: This work is supported by a PSI inter-departmental funding initiative (Cross)
In cyclotron-based proton therapy facilities, an energy selection system is typically used to lower beam energy from the fixed value provided by the accelerator (250/230MeV) to the one needed for the treatment (230-70MeV). Such a system has drawback of introducing an energy-dependent beam current at the patient location, resulting in energy-dependent beam intensity ratios of about 103 between high and low energies. This complicates treatment delivery and challenges patient safety systems. As such, we propose the use of a dual-energy degrader method that can reduce beam intensity for high-energy beams. The first degrader is made of high Z material and the second is made of low Z material and are placed next to each other. For high energies (230-180MeV), we use only first degrader to increase beam emittance after degrader and thus lose intensity in emittance selection collimators. For intermediate energy beams (180-100MeV) we use the combination of both degraders, whereas for low energy beams (100-70MeV), only the second degrader limits the increase in emittance. With this approach, energy-independent beam intensities can be achieved, whilst localizing beam losses around the degrader.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS024  
About • Received ※ 16 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS025 A Novel Method of Emittance Matching to Increase Beam Transmission for Cyclotron Based Proton Therapy Facilities: Simulation Study scattering, emittance, optics, proton 3007
 
  • V. Maradia, A.L. Lomax, D. Meer, S. Psoroulas, J.M. Schippers, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • V. Maradia
    ETH, Zurich, Switzerland
 
  Funding: This work is supported by a PSI inter-departmental funding initiative (Cross)
In proton therapy, high dose rates can reduce treatment delivery times, allowing for efficient mitigation of tumor motion and increased patient throughput. With cyclotrons, however, high dose rates are difficult to achieve for low-energies as, typically, the emittance after the degrader is matched in both transversal planes using circular collimators, which does not provide an optimal matching to the acceptance of the following beamline. Transmission can however be substantially improved by transporting maximum acceptable emittances in both orthogonal planes, but at the cost of gantry angle-dependent beam shapes at isocenter. Here we demonstrate that equal emittances in both planes can be recovered at the gantry entrance using a thin scattering foil, thus ensuring gantry angle-independent beam shapes at the isocenter. We demonstrate experimentally that low-energy beam transmission can be increased by a factor of 3 using this approach compared to the currently used beam optics, whilst gantry angle-independent beam shapes are preserved. We expect that this universal approach could also bring a similar transmission improvement in other cyclotron-based proton therapy facilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS025  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS035 First Production of Astatine-211 at Crocker Nuclear Laboratory at UC Davis target, proton, isotope-production, ISOL 3038
 
  • E. Prebys, D.A. Cebra, R.B. Kibbee, L.M. Korkeila, K.S. Stewart
    UCD, Davis, California, USA
  • M.R. Backfish
    UC Davis, Davis, USA
 
  Funding: This work partially supported by the US DOE under contract DE-SC0020407
There is a great deal of interest in the medical community in the use of the alpha-emitter At-211 as a therapeutic isotope. Among other things, its 7.2 hour half life is long enough to allow for recovery and labeling, but short enough to avoid long term activity in patients. Unfortunately, the only practical technique for its production is to bombard a Bi-209 target with a ~29 MeV alpha beam, so it is not accessible to commercial isotope production facilities, which all use fixed energy proton beams. The US Department of Energy is therefore supporting the development of a "University Isotope Network" (UIN) to satisfy this need. As part of this effort, we have developed an At-211 production facility using the variable-energy, multi-species cyclotron at Crocker Nuclear Lab the University of California, Davis. This effort relies on a beam probe which has been modified to serve as an internal Bi-209 target, to avoid problems with alpha particle extraction efficiency. This poster will data on the first production and recovery of At-211 using this system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS035  
About • Received ※ 09 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS042 Development of a Cyclotron Based External Beam Irradiation System for Elemental Analysis proton, radiation, target, simulation 3064
 
  • P. Thongjerm, A. Ngamlamiad, W. Pornroongruengchok, K. Tangpong, S. Wonglee
    Thailand Institute of Nuclear Technology, Nakhon Nayok, Thailand
 
  We present the studies carried out at the cyclotron facility at Thailand Institute of Nuclear Technology (TINT, Nakhon Nayok, Thailand). The cyclotron accelerates up to 30 MeV proton with a maximum beam current of 200 µA. Proton beam is transported to three target halls, including the R&D vault. Particularly, the R&D beamline consists of a five-port switching magnet allowing further extension for multidisciplinary research and experiments. The first station of the research vault is dedicated to non-destructive and multi-elemental analysis using proton-induced x-ray (PIXE) and proton-induced gamma (PIGE) techniques. For this purpose, the beam is extracted through an exit foil to the air. The beam size is then shaped by a set of collimators before reaching a sample. However, the range of the protons in air and the attenuation of x-rays may deteriorate. Therefore, the external irradiation system, including exit foil, collimator and detector arrangement, is evaluated in Geant4 to optimise the proton beam quality and improve detection efficiency. A detailed description of the simulation and results are discussed in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS042  
About • Received ※ 16 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS051 Study on Construction of an Additional Beamline for a Compact Neutron Source Using a 30 Mev Proton Cyclotron neutron, target, proton, beam-transport 3087
 
  • Y. Kuriyama, M. Hino, Y. Iwashita, R.N. Nakamura, H. Tanaka
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS) has been actively using neutrons extracted from the research reactor (KUR) for collaborative research. Since the operation of KUR is scheduled to be terminated in 2026 according to the current reactor operation plan, the development of a general-purpose neutron source using the 30 MeV proton cyclotron (HM-30) installed at KURNS for Boron Neutron Capture Therapy (BNCT) research has been discussed as an alternative neutron source. In this presentation, we report on the conceptual design of an additional beamline for a compact neutron source using this cyclotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS051  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)