Present Status and Future Plan with Charge Stripper Ring at RIKEN RIBF

RIKEN Nishina accelerator based science center Hiroshi Imao

Outline

1. Recent upgrade of RIBF

- Intensity upgrade of ²³⁸U
- Charge strippers of ²³⁸U

2. Charge stripper ring (CSR)

- Concept
- Design of CSR1 for ²³⁸U
- CSR extension

3. Summary and future prospects

RIKEN RI beam factory (RIBF)

RIBF

Cyclotron-based Heavy-ion accelerator for in-flight RI beams (since 2006) Super conducting ring cyclotron (SRC) is a main device. Acceleration of **ALL** ions up to 345 MeV/u (70% of c) in **CW** mode

Intensity upgrade of ²³⁸U

Generation of in-flight **fission** RI beams (A~100) for elucidation of elemental synthesis **Only 0.1% of the goal intensity 1 puA** (ion sources, strippers, space charge effects) Construction of next-generation facilities worldwide (FRIB, FAIR, RAON, HIAF…)

Congratulation of successful launch of FRIB project !!!

	RRC	fRC	IRC	SRC	
K value [MeV]	540	570	980	2600	
number of sectors	4	4	4	6	
velocity gain	4	2.1	1.5	1.5	
frequency range [MHz]	18-38	54.75	18-38	18-38	
weight [ton]	2300	1500	2700	8300	

Intensity upgrade of ²³⁸U

240-fold increase in beam intensity of ²³⁸U since 2008

- Improvements of 28GHz-ECRIS and injector (RILAC2)
- He gas stripper and graphite disk stripper (lifetime problem)
- Refinement of accelerator operation techniques
- RF cavities upgrade for RRC (space charge problem)

Acceleration scheme of ²³⁸U at RIBF

Conventional carbon foil strippers cannot be applied for U acceleration

Application limit of fixed C foil

Huge dE/dx of heavy ions on C foils

Heat load: sublimation

Radiation damage : lattice modification

Application limit (rough estimation)

 $\sim 10^{11}$ /s for ²³⁸U at intermediate energies

Example...

Xe-MT (6/16-7/5 in 2012 at RIBF) variation of output intensities w/ time

The He gas stripper and rotating graphite disk stripper solved this lifetime problem

He gas stripper

Rotating graphite disk stripper

Axial thermal conductivity (~1500 W/mm2)

Courtesy of H. Hasebe (RIKEN)

Dependence of total charge stripping efficiency on mass

Low total charge stripping efficiency for uranium of about 5% ($20\% \times 25\%$) is a bottleneck for further intensity upgrade

Future upgrade plan with Charge Stripper Ring (CSR)

Concept of CSR

The bunch structure should be preserved to match to acceptance of the subsequent cyclotrons (e.g., 18.25 MHz at RIBF).

Isometric ring

Charge stripper should be placed at achromat section

Eigen ellipses for all charge states should be matched to suppress emittance growth

 \rightarrow charge independent focusing

Recycle by circling the beams with other than selective charge

- Isometric ring \rightarrow 8 bending magnets (BM1-8)
- Same energy \rightarrow 2 energy recovery cavities
- Same transverse shape \rightarrow 66 quadrupoles

Close-up view of quadrupole station

crowded quadrupoles in parallel beamlines

MAMI C (Microtron HDSM at Mainz univ.)

Linear calculations

Linear orbit calculations to determine the quadrupole's specification Beams are doubly achromat and eigen ellipses are match on all charge states at the He stripper.

Design of compact and powerful Q magnets is a key for CSR

Conceptual design of ``Hourglass-shaped'' quadrupoles

Bent poles and the coils in a straight neck of a pole

The waisted side yokes reduce leakage field on the adjacent path

Patent for the unique shape was applied by RIKEN and HITACHI Engineering Co., Ltd.

(application number JP2020-056540 in Japan).

Shield to reduce axial leakage field

Optimization of pole shape

 \int B4 dz/ \int B2 dz and \int B6 dz/ \int B2 dz<10⁻³

Minimize multipole components due to XY asymmetry and deviation from hyperbolas w/ 3D calculations using OPERA

Prototype production and magnetic field measurements

The desired magnetic field gradient was obtained The leakage field was sufficiently small as calculated

Harmonic coil method

Design of EBM1

Calculated trajectories for extraction

Parameters of bending magnets

	BM1, 2	BM3, 8	BM4, 7	BM5, 6
magnetic field	1.0067 T	1.4261 T	1.4261 T	1.4261 T
pole gap	50 mm	45 mm	45 mm	45 mm
weight	25.5 t	32.6 t	28.5 t	56.3 t
height	930 mm	1525 mm	1285 mm	1925 mm
magnetomotive force	40200 AT	52300 AT	52300 AT	52300 AT
current	350 A	450 A	450 A	450 A
coil size	T134xH82 mm	T134xH82 mm	T134xH82 mm	T134xH82 mm
number of turns	120 turns	120 turns	120 turns	120 turns
hollow conductor	□12x <i>ϕ</i> 6 mm	□12x <i>ϕ</i> 6 mm	□12x <i>ϕ</i> 6 mm	\Box 12x ϕ 6 mm

- Large pole area to bend 8-charge beams simultaneously
- Similar to sector magnets of ring cyclotrons while the beam separation is large
- Fine tuning of pole edges to adjust BL products to make isometric orbits for all charge states

Calculated orbits

Stripper section

Stripper, acceleration cavities and re-buncher are placed in the stripper section Gas strippers to withstand the injection of high-power uranium beams of up to ~38 kW A two-stage stripper with N₂ and He arranged in series will be used.

2-stage stripper

N₂ (~0.1 mg/cm²) +He (~0.4 mg/cm²)

The charge state is reset with N2 stripper every circulation, e.g., Qm=55+ Average charge states during circulation are fixed, e.g., Qm=63+ In the stripping cycle, beam loss due to charge states being out of range is reduced

Calculation results of stripping cycle

80

V/m 6.74e+06 5.51e+06 4.29e+06 3.06e+06 1.84e+06 -0 😽 -1.84e+06 -3.06e+06 -4.29e+06 -5.51e+06 -6.74e+06 -

Design works of RF cavities

energ	y recovery
36.5	[MHz]
8.21	[m]
0.62	[m]
2.05	[m]
20°	
0.0689	[m]
0.5510	[m]
~ 1	MV
	energ 36. 5 8.21 0.62 2.05 20° 0.0689 0.5510 ~1

Design of rebuncher can be based on the present rebuncher (109.5 MHz)

Emittance growth

Sources of emittance growth in CSR1 (The mean number of revolutions is ~3)

- Charge-exchange energy struggling $\delta p/p < \sim 0.12\% (2\sigma)$
- Angular struggling

 $\sigma \sim 0.3 \text{ mrad (N2)}, 0.4 \text{ mrad (He)}$

- Energy recovery process
- Space charge effect (negligible)

Matrix calculation with 2-stage strippers

- Emittance growths in transverse are well controlled (eigen ellipse matching)
- Emittance growth due to the charge-exchange struggling is unavoidable in the present longitudinal optics (appropriate slits to cut beams out of acceptance)

Extraction efficiency ~75%

Loss due to energy struggling 14% (cut >±0.3%) Loss due to charge state being out of range 10% (2-stage stripper)

Changing the design of CSR1 for the better

CSR1 extension (CSR1ex)

Expand equilibrium orbits to fit to the large room Additional functions in CSR1ex being considered

Arrangement diagram of main components in CSR1ex

Additional functions of CSR1ex

Double rebuncher at DS1 (longitudinal optics)
Strong focusing at DS1 (transverse optics)
Chicane sections for Pb, Pt, W and Xe

(4)Trim coils for BM3-8

(5)Selective extraction charges (63, 64)

6Charge independent energy correctors at DS5

Chicane section for other ions

Chicane sections with 4 dipoles (CBM1-4)

Adjustment of orbit length with bump Matching with ²³⁸U orbits (dispersion matching)

Trim coils in BM3-8

Trim coils will be installed in BM3-8 for all charge states After the chicane section, non-U ion's orbits are exactly the same as U's orbits by adjusting trim coils

Simultaneous adjustments for all charge states with only 4 dipoles. The design procedure is similar to that for the CSR.

Design orbits for non-uranium ions

Summary and future prospects

- The performance of the RIBF accelerators is improving steadily.
- Upgrade plan with CSRs is under consideration aiming 20-fold increase of ²³⁸U intensities.
- Calculations, design and construction of key devices of CSR1 are undergoing so that it can be built as soon as the budget is approved.
- Installation site for CSR1 is being finalized and the new functions will be added.
- TAC meeting for the upgrade plan with CSR1 are planning to organized in the next year.

Total cost \$100 M	1st year	2nd year	3rd year	4th year	5th year	6th year	7th year	8th year	9th year
①CSR1 (\$35 M)	design		fabrication		installation				
②SRC RF upgrade (\$26 M)	design	fabrication			installation				
③CSR2/fRC-IRC matching (\$35 M)			design		fabrication		installation		
④BigRIPS beam dump upgrade (\$9 M)		design			fabrication		installation		
beam supply (\$40 M/year)						400 pnA			2000 pnA

Acknowledgement

- All members of accelerator group at Nishina center
- Y. Yano (RIKEN), M. Wakasugi (RIKEN, Kyoto U.)
- Hitachi engineering T. Hori, M. Abe, T. Chiba, S. Taniyama, T. Imamura, N. Iwaki
- SIGMAPHI M. Sugitani, W. Beeckman
- TOYAMA N. Kuwahara, D. Kobayashi

