MC4: Hadron Accelerators
A04 Circular Accelerators
Paper Title Page
MOPAB016 Small Longitudinal Emittance Setup in Injectors with Gold Beam for Beam Energy Scan in RHIC 90
 
  • H. Huang, C.J. Gardner, C. Liu, V. Schoefer, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In recent years, RHIC physics program calls for gold beam collisions with energies at and lower than the nominal RHIC injection energy. To get shorter bunches at the three higher energies (9.8GeV/c, 7.3GeV/c and 4.75GeV/c), RHIC 28MHz cavities were used. The longitudinal emittance out of injectors needs to fit in the 28MHz cavities in RHIC. At two lower energies (4.6 and 3.85 GeV/c), the 9MHz RF cavities were used, which set different requirements from injectors. Extensive beam studies were carried out to establish needed beam parameters, such as bunch intensities and longitudinal emittances. In general, enough intensity can be provided for all energies within the longitudinal emittance constraint. This paper summarizes the recent injector operation experiences for various energies.
 
poster icon Poster MOPAB016 [2.641 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB016  
About • paper received ※ 16 May 2021       paper accepted ※ 17 August 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB174 Foil Hits Reduction by Minimizing Injection Beam Size at the Foil in J-PARC RCS 590
 
  • P.K. Saha, H. Harada, K. Okabe, F. Tamura, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • H. Hotchi
    KEK, Tokai, Ibaraki, Japan
 
  Funding: Pranab Kumar Saha
The uncontrolled beam loss caused by the foil scattering of the circulating beam during multi-turn charge-exchange injection is one of the main sources for high residual radiation at the injection area of J-PARC 3-GeV rapid cycling synchrotron. We studied to reduce foil hits of the circulating beam by minimizing the vertical injection beam size at the foil and using a smaller vertical foil size. The vertical foil size was reduced according to the injection beam size by maintaining the stripping efficiency. As a result, the number of circulating beam passing through foil was significantly reduced due to smaller foil size. The simulation and measurement results of the foil hits reduction are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB174  
About • paper received ※ 20 May 2021       paper accepted ※ 31 May 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB175 Advanced Concepts and Technologies for Heavy Ion Synchrotrons 594
 
  • P.J. Spiller, O. Boine-Frankenheim, L.H.J. Bozyk, S. Klammes, H. Kollmus, D. Ondreka, I. Pongrac, N. Pyka, C. Roux, K. Sugita, St. Wilfert, T. Winkler, D.F.A. Winters
    GSI, Darmstadt, Germany
 
  New concepts and technologies are developed to advance the performance of heavy ion synchrotrons. Besides fast ramping of superconducting magnets, extreme UHV technologies to stabilize dynamic vacuum and charge related loss, broad band MA cavities, space charge compensation by means of electron lenses and new cooling technologies, e.g. laser cooling, show great promise to advance the forefront of beam parameters. Several of these technologies and concepts are developed and tested at GSI/FAIR. Progress and plans will be reported.  
poster icon Poster MOPAB175 [1.367 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB175  
About • paper received ※ 11 May 2021       paper accepted ※ 21 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB177 ELENA Commissioning and Status 598
 
  • C. Carli, M.E. Angoletta, W. Bartmann, L. Bojtár, F. Butin, B. Dupuy, Y. Dutheil, M.A. Fraser, P. Freyermuth, D. Gamba, L.V. Jørgensen, B. Lefort, O. Marqversen, M. McLean, S. Ogur, S. Pasinelli, L. Ponce, G. Tranquille
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring ELENA is a small synchrotron recently constructed and commissioned to decelerate antiprotons injected from the Antiproton Decelerator AD with a kinetic energy of 5.3 MeV down to 100 keV. Controlled deceleration in the synchrotron, equipped with an electron cooler to reduce losses and generate dense bunches, allows the experiments, typically capturing the antiprotons in traps and manipulating them further, to improve the trapping efficiency by one to two orders of magnitude. During 2018, bunches with an energy of 100 keV with parameters close to nominal have been demonstrated, and first beams have been provided to an experiment in a new experimental zone. The magnetic transfer lines from the AD to the experiments have been replaced by electrostatic lines from ELENA. Commissioning of the new transfer lines and, in parallel, studies to better understand the ring with H beams from a dedicated source, have started in autumn 2020. The first 100 keV antiproton physics run using ELENA will start in late summer 2021.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB177  
About • paper received ※ 18 May 2021       paper accepted ※ 14 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB179 Simulations of AGS Boosters Imperfection Resonances for Protons and Helions 606
 
  • K. Hock, H. Huang, F. Méot, N. Tsoupas
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
As part of the effort to increase the polarization of the proton beam for the physics experiments at RHIC, a scan of orbit harmonic corrector strengths is performed in the Booster to ensure polarization transmission through the |G gamma|=3 and 4 imperfection resonances is optimized. These harmonic scans have been simulated using quadrupole alignment data and accurately match experimental data. The method used to simulate polarized protons is extended to polarized helions for crossing the |G gamma|=5 through |G gamma|=10 imperfection resonances and used to determine the corrector strength required to cross each resonance.
 
poster icon Poster MOPAB179 [0.437 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB179  
About • paper received ※ 17 May 2021       paper accepted ※ 31 May 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB181 Non-Delivery Time Reduction at MedAustron 613
 
  • L. Adler, S. Danzinger, F. Farinon, F. Feichtinger, G. Guidoboni, N. Kahn, C. Kurfürst, D.A. Prokopovich, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  Funding: Funding by the NÖ WIRTSCHAFTS- UND TOURISMUSFONDS under grant number WST3-F-5033232/001-2020.
MedAustron is a cancer treatment center in Austria providing proton and carbon ion beams to three clinical and one non-clinical research beam lines. The slow extraction of particles from the synchrotron follows a third order resonance extraction scheme. Currently, for every change of extraction energy a new spill needs to be generated. Besides the beam-on time of the particle delivery, every spill is also comprised of non-delivery time components e.g. the multiturn injection, acceleration or magnet conditioning. For small tumor target volumes, this non-delivery time is the major contribution to the overall treatment time. A dedicated performance improvement project (supported with a grant from the state of lower Austria) was executed with the goal to reduce these non-delivery times without affecting important clinical beam parameters such as the beam size or penetration depth. The implemented reduction of the non-delivery time >50% could be achieved, resulting in beam-on time reductions for reference treatment plans between 25% (largest proton PTV) and 58% (smallest carbon PTV). Results of commissioning efforts, technical details and the achieved optimizations will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB181  
About • paper received ※ 14 May 2021       paper accepted ※ 28 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB182 Automated Synchrotron Lattice Design and Optimisation Using a Multi-Objective Genetic Algorithm 616
 
  • X. Zhang, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • E. Benedetto
    TERA, Novara, Italy
  • E. Benedetto
    CERN, Meyrin, Switzerland
 
  Funding: This work is partially supported by the Australian Government Research Training Program Scholarship.
As part of the Next Ion Medical Machine Study (NIMMS), we present a new method for designing synchrotron lattices. A step-wise approach was used to generate random lattice structures from a set of feedforward neural networks. These lattice designs are optimised by evolving the networks over many iterations with a multi-objective genetic algorithm (MOGA). The final set of solutions represent the most effi- cient and feasible lattices which satisfy the design constraints. It is up to the lattice designer to choose a design that best suits the intended application. The automated algorithm presented here randomly samples from all possible lattice layouts and reaches the global optimum over many iterations. The requirements of an efficient extraction scheme in hadron therapy synchrotrons impose stringent constraints on the lat- tice optical functions. Using this algorithm allows us to find the global optimum that is tailored to these constraints and to fully utilise the flexibilities provided by new technology.
 
poster icon Poster MOPAB182 [6.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB182  
About • paper received ※ 15 May 2021       paper accepted ※ 23 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB183 A Framework for Dynamic Aperture Studies for Colliding Beams in the High-Luminosity Large Hadron Collider 620
 
  • S. Kostoglou, H. Bartosik, Y. Papaphilippou, G. Sterbini
    CERN, Geneva, Switzerland
 
  During the last physics run of the Large Hadron Collider (LHC), Dynamic Aperture (DA) studies have been successfully employed to optimize the accelerator’s performance by guiding the selection of the beam and machine parameters. In this paper, we present a framework for single-particle tracking simulations aiming to refine the envisaged operational scenario of the future LHC upgrade, the High-Luminosity LHC (HL-LHC), including strong non-linear fields such as beam-beam interactions. The impact of several parameters and beam processes during the cycle is initially illustrated with frequency maps and then quantified with DA studies.  
poster icon Poster MOPAB183 [2.789 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB183  
About • paper received ※ 17 May 2021       paper accepted ※ 06 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB184 Unsupervised Learning Techniques for Tune Cleaning Measurement 624
 
  • H. Garcia Morales
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • E. Fol, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Precise measurements of tune and its stability are crucial for various optics analyses in the LHC, e.g. for the determination of the beta star using K-modulation. LHC BBQ system provides tune measurements online and stores the tune data. We apply unsupervised machine learning techniques on BBQ tune data in order to provide an automatic outlier detection method for better measurements of tune shifts and unexpected tune jitters.  
poster icon Poster MOPAB184 [0.354 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB184  
About • paper received ※ 14 May 2021       paper accepted ※ 09 June 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB185 HL-LHC Local Linear Optics Correction at the Interaction Regions 628
 
  • H. Garcia Morales
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
  • R. Tomás García
    CERN, Geneva, Switzerland
 
  Magnetic imperfections of the HL-LHC inner triplet are expected to generate a significant \beta-beating. For that reason, improved local optics correction techniques at the low-\beta insertions is essential to ensure a high luminosity performance in the HL-LHC. In this study, we compare different strategies for local optics correction at the Interaction Regions with respect to their final performance in terms of residual \beta-beating. Supervised learning techniques are also explored to predict the inner triplet magnetic error contributions.  
poster icon Poster MOPAB185 [0.469 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB185  
About • paper received ※ 14 May 2021       paper accepted ※ 10 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB186 Comparison of Segment-by-Segment and Action-Phase-Jump Techniques in the Calculation of IR Local Corrections in LHC 632
 
  • H. Garcia Morales
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
  • R. Tomás García
    CERN, Geneva, Switzerland
 
  The correction of the local optics at the Interaction Regions of the LHC is crucial to ensure a good performance of the machine. In this paper, we compare two different techniques for local optics correction: Action-Phase Jump and Segment-by-Segment techniques. The comparison is made in view of future machine configurations such as Run 3 LHC optics and HL-LHC optics.  
poster icon Poster MOPAB186 [0.349 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB186  
About • paper received ※ 14 May 2021       paper accepted ※ 09 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB187 Design and Calculation of the RF System of DC140 Cyclotron 636
 
  • A.S. Zabanov, V.B. Zarubin
    JINR/FLNR, Moscow region, Russia
  • J. Franko, G.G. Gulbekyan, I.V. Kalagin, N.Yu. Kazarinov, S.V. Mitrofanov, V.A. Sokolov, K. Verlamov
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research carries out the works under creating of FLNR JINR Irradiation Facility based on the cyclotron DC140. The facility is intended for SEE testing of microchip, for production of track membranes and for solving of applied physics problems. The main systems of DC140 are based on the DC72 cyclotron ones that now are under reconstruction. The DC140 cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 5.5 up to two fixed energies 2.124 and 4.8 MeV per unit mass. The intensity of the accelerated ions will be about 1 pmcA for light ions (A<86) and about 0.1 pmcA for heavier ions (A>132). The designed RF-system of the DC-72 cyclotron with a half-wave cavity is not suitable due to the big vertical size. For this reason, a new quarter-wave RF-system was developed for the DC140 cyclotron project. The results of calculating the parameters of the new RF-system are given in this work.  
poster icon Poster MOPAB187 [0.488 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB187  
About • paper received ※ 17 May 2021       paper accepted ※ 24 May 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB189 Beam Commissioning of XiPAF Synchrotron 639
 
  • H.J. Yao, X. Guan, Y. Li, X.Y. Liu, M.W. Wang, X.W. Wang, Y. Yang, W.B. Ye, H.J. Zeng, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W.L. Liu, D. Wang, Z.M. Wang
    NINT, Shannxi, People’s Republic of China
 
  XiPAF (Xi’an 200MeV Proton Application Facility) is a project to fulfill the need for the experimental simulation of the space radiation environment. It comprises a 7 MeV H linac, a 60-230 MeV proton synchrotron, and experimental stations. The Installation of the synchrotron, beamline and one experimental station were completed at the end of December 2019, and commissioning has just begun. Circulating beam around the synchrotron was observed on the first day of operation, and now 10-200 MeV proton beam directly extracted from the synchrotron had been transported to the experimental station for user experiments. The results of the commissioning and data analysis are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB189  
About • paper received ※ 18 May 2021       paper accepted ※ 21 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB006 The Impact of Beam Position Monitor Tilts on Coupling Measurements 1342
 
  • L. van Riesen-Haupt, R. Tomás García
    CERN, Meyrin, Switzerland
 
  The measurement and correction of coupling resonance driving terms is a key tool for improving the performance of synchrotrons. These terms are measured by exciting the beam and observing the subsequent motion in the horizontal and vertical planes through beam position monitors. This paper outlines the impact of tilt errors in these monitors to the distortion of the amount of coupling measured between the planes and how the computation of the resonance driving terms is affected by these tilts. It also attempts to use these results for mimicking tilt errors in simulations and discusses how discrepancies in measured resonance driving terms could be used to estimate the tilt errors that cause them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB006  
About • paper received ※ 16 May 2021       paper accepted ※ 14 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB011 Momentum Compaction Factor Measurements in the Large Hadron Collider 1360
 
  • J. Keintzel, L. Malina, R. Tomás García
    CERN, Geneva, Switzerland
 
  The Large Hadron Collider (LHC) at CERN and its planned luminosity upgrade, the High Luminosity LHC (HL-LHC) demand well-controlled on- and off-momentum optics. Optics measurements are performed by analysing Turn-by-Turn (TbT) data of excited beams. Different techniques to measure the momentum compaction factor from these data are explored, taking into account the possibility to combine them with RF-voltage scans in future experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB011  
About • paper received ※ 18 May 2021       paper accepted ※ 16 June 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB026 Final Booster Complex Design for the Jefferson Lab Electron Ion Collider 3805
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
 
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. retains a license to publish or reproduce this manuscript for U.S. Government purposes.
In this work we show the final iteration of the design for the booster complex of the Jefferson Lab EIC, which would have brought the ions from an energy (proton) of 150 MeV up to 12.1 GeV. This complex would have consisted of two figure-8 rings. The Low Energy Booster (LEB) which would have accelerated its protons from 150 MeV to 8 GeV, and has had its lattice tweaked to increase the effectiveness of chromaticity cancellations. The High Energy Booster (HEB) would have brought the 8 GeV protons up to 12.1 GeV. The HEB would in the tunnel that was designed for the collider rings, sitting on top of them. It has had a bypass around the interaction region added, as well as a cooling solenoid installed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB026  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB168 Optics Measurement by Excitation of Betatron Oscillations in the CERN PSB 4078
 
  • E.H. Maclean, F. Antoniou, F. Asvesta, H. Bartosik, C. Bracco, J. Dilly, E. Fol, H. Garcia Morales, M. Hofer, J. Keintzel, M. Le Garrec, T.E. Levens, L. Malina, T.H.B. Persson, T. Prebibaj, E. Renner, P.K. Skowroński, F. Soubelet, R. Tomás García, A. Wegscheider, L. van Riesen-Haupt
    CERN, Geneva, Switzerland
 
  Optics measurement from analysis of turn-by-turn BPM data of betatron oscillations excited with a kicker magnet has been employed very successfully in many machines but faces particular challenges in the CERN PSB where BPM to BPM phase advances are sub-optimal for optics reconstruction. Experience using turn-by-turn oscillation data for linear optics measurements during PSB commissioning in2021 is presented, with implications for the prospect of such techniques in the PSB more generally.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB168  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB177 Simulation Model Improvements at the Cooler Synchrotron COSY Using the LOCO Algorithm 4111
 
  • V. Poncza, A. Lehrach
    FZJ, Jülich, Germany
  • A. Lehrach, V. Poncza
    RWTH, Aachen, Germany
 
  Funding: ERC Advanced Grant (srEDM #694340) of the European Union
The JEDI (Jülich Electric Dipole moment Investigations) collaboration is searching for Electric Dipol Moments (EDMs) of charged particles in storage rings. In a stepwise approach, a first direct deuteron EDM measurement was performed at the Cooler Synchrotron COSY and design studies for a dedicated proton EDM storage ring are underway. In an experiment with a polarized beam in a storage ring, an EDM leads to a vertical polarization buildup. However, the vertical polarization component is also induced by systematic effects such as magnet misalignments. To investigate systematic effects individually and to support data analysis, a realistic simulation model of the storage ring is needed. In this paper, the development of such a model based on the Bmad software library is presented. Furthermore, various systematic effects and their impact on the spin motion in COSY are investigated and quantified by means of beam and spin tracking simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB177  
About • paper received ※ 19 May 2021       paper accepted ※ 27 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB183 New Longitudinal Beam Production Methods in the CERN Proton Synchrotron Booster 4130
 
  • S.C.P. Albright, F. Antoniou, F. Asvesta, H. Bartosik, C. Bracco, E. Renner
    CERN, Meyrin, Switzerland
  • E. Renner
    TU Vienna, Wien, Austria
 
  As part of the LHC Injectors Upgrade (LIU) project, significant improvements were made to the CERN Proton Synchrotron Booster (PSB) during the 2019/2020 long shutdown, including a new Finemet-based wideband RF system, renovated longitudinal beam control, and a new magnetic cycle. To meet the requirements of the diverse experimental program, the PSB provides beams with intensities spanning three orders of magnitude and a large range of longitudinal emittances. To maximize the brightness, in particular for the LHC beams, the voltages at low energy are designed to reduce the impact of transverse space charge using a second RF harmonic in bunch lengthening mode. At high energies, the risk of longitudinal microwave instability is avoided by optimizing the longitudinal distribution to raise the instability threshold. RF phase noise is applied to provide controlled longitudinal emittance blow-up and to shape the longitudinal distribution. This paper discusses the design of the RF functions used to meet the beam specifications, whilst ensuring longitudinal stability.  
poster icon Poster THPAB183 [6.692 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB183  
About • paper received ※ 18 May 2021       paper accepted ※ 22 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB317 Experiment and Simulation Study on the Capture and Acceleration Process of XiPAF Synchrotron 4409
 
  • Y. Li, X. Guan, X.Y. Liu, M.W. Wang, X.W. Wang, Q.Z. Xing, Y. Yang, H.J. Yao, W.B. Ye, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W.L. Liu, D. Wang, Z.M. Wang, Y. Yang, M.T. Zhao
    NINT, Shannxi, People’s Republic of China
 
  The beam commissioning of the capture and acceleration process on the XiPAF (Xi’an 200MeV Proton Application Facility) synchrotron has been carried out. The efficiency of the experiment results has been compared with the simulation results. At present, the efficiency of the capture process with single-harmonic is about 73%, and the acceleration efficiency is about 82%, and the simulation results are 77% and 96% without space charge effect, respectively. In order to improve efficiency, dual-harmonic was used during the capture and acceleration process. During the experiment, the capture efficiency was increased by 5%, and the acceleration efficiency was increased by 4%. The capture efficiency decreases with the increase of the maximum RF voltages. We analyzed the reasons for the decrease in capture efficiency. In the next step, further verification will be carried out through experiments under different conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB317  
About • paper received ※ 19 May 2021       paper accepted ※ 08 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB318 Uniformization of the Transverse Beam Profile with Nonlinear Magnet 4413
 
  • Y. Li, X. Guan, X.Y. Liu, X.W. Wang, Q.Z. Xing, Y. Yang, H.J. Yao, W.B. Ye, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • Y. Yang
    NINT, Shannxi, People’s Republic of China
 
  The beam generated after slow extraction of the synchrotron is always not uniform and asymmetrical in transverse distribution. In practice, radiation therapy or radiation irradiation requires a high degree of uniformity of beam spot. Therefore, it is necessary to adjust the beam distribution with a nonlinear magnet and other elements on the transport line from synchrotron ring to beam target station. Nonlinear magnet has high requirements on beam quality. Before passing through the nonlinear magnet field, the beam center can be adjusted by taking advantage of the gradient change distribution of the nonlinear magnet’s transverse field map to achieve uniform distribution at the target station. As an example, we use the parameters of heavy ions of XiPAF (Xi’an 200MeV Proton Application Facility) to simulate the beam transport from synchrotron ring to beam target station.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB318  
About • paper received ※ 20 May 2021       paper accepted ※ 08 July 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB356 Progress and Status on Civil Construction of the SIS100 Accelerator Building 4493
 
  • M. Draisbach, N. Pyka, P.J. Spiller
    GSI, Darmstadt, Germany
  • J. Blaurock, M. Ossendorf
    FAIR, Darmstadt, Germany
 
  Besides the accelerator machine itself, civil construction of the accelerator ring tunnel building in the northern area of the FAIR campus is a core activity of the rapidly progressing FAIR project. It will facilitate and supply the future SIS100 accelerator at 17m underground level and has been growing continuously and according to schedule since groundbreaking in 2017. This contribution presents the current status of the civil construction progress and gives an optimistic forecast for the preparation of machine installation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB356  
About • paper received ※ 20 May 2021       paper accepted ※ 06 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)