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Abstract
The measurement and correction of coupling resonance

driving terms is a key tool for improving the performance
of synchrotrons. These terms are measured by exciting the
beam and observing the subsequent motion in the horizontal
and vertical planes through beam position monitors. This
paper outlines the impact of tilt errors in these monitors to
the distortion of the amount of coupling measured between
the planes and how the computation of the resonance driving
terms is affected by these tilts. It also attempts to use these
results for mimicking tilt errors in simulations and discusses
how discrepancies in measured resonance driving terms
could be used to estimate the tilt errors that cause them.

BACKGROUND
To first order, particle accelerators are often designed us-

ing quadrupoles that cause particles to oscillate around a
reference orbit as they traverse the machine. In an ideal
approximation, the quadrupoles focus and de-focus the mo-
tion of the particles in two orthogonal planes leading to
this motion being independent in the vertical and horizontal
planes.

In this ideal case, at any given location, 𝑠, in the machine,
the horizontal position, 𝑥, of a particle as it circles the accel-
erator 𝑛 times is given as

𝑥(𝑛) = √𝐼𝑥𝛽𝑥(𝑠) cos(2𝜋𝑄𝑥𝑛 + 𝜙𝑥,0), (1)

where 𝛽𝑥(𝑠) is the local magnetic beta function and 𝑄𝑥 is
the horizontal betatron tune, characterising the oscillations
in the horizontal plane. 𝐼𝑥 and 𝜙𝑥,0 depend on the initial
conditions and location of the particle. A similar expression
can be obtained for the vertical plane by substituting 𝑦 for 𝑥.

The position can be divided by √𝛽𝑥(𝑠) to give the nor-
malised position, ̂𝑥, which can be combined with its conju-
gate momentum, ̂𝑝𝑥, to give the complex Courant-Snyder
coordinate ℎ𝑥−, which describes the particle’s full position
in phase space and is given by

ℎ𝑥−(𝑛) = ̂𝑥(𝑛) − 𝑖 ̂𝑝𝑥(𝑛) = √𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0). (2)

In reality, however, manufacturing and alignment errors
cause the motion in the two planes to be coupled, leading
to the motion in the vertical plane to affect the horizontal
position of a particle and vice-versa. As a result of this, the
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equation of the horizontal motion is modified to

ℎ𝑥−(𝑛) = √𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0)

−2𝑖𝑓1001(𝑠)√𝐼𝑦𝑒𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0)

−2𝑖𝑓1010(𝑠)√𝐼𝑦𝑒−𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0),

(3)

where 𝑓1001 and 𝑓1010 quantify the local magnitude of the
coupling effect and are referred to as the coupling resonance
driving terms (RDT) [1]. The coupling RDTs are multiplied
by terms that correspond to what would be the uncoupled
motion in the orthogonal plane. In the vertical plane, the
complex Courant-Snyder co-ordinate with coupling can be
expressed as

ℎ𝑦−(𝑛) = ̂𝑦(𝑛) − 𝑖 ̂𝑝𝑦(𝑛) = √𝐼𝑦𝑒𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0)

−2𝑖𝑓 ∗
1001(𝑠)√𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0)

−2𝑖𝑓1010(𝑠)√𝐼𝑥𝑒−𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0).

(4)

MEASUREMENT
In order to ensure that the accelerator optics are as close

as possible to the design optics and to improve the stability
of the beam, it is useful to measure and correct the coupling
RDTs. The RDTs can be measured by computing ℎ− in both
planes over many turns and taking a Fourier transform of
this. The magnitude of the spectral lines at the frequencies
corresponding to the tune of the orthogonal plane are directly
proportional to the resonance driving terms.

Since a beam position monitor (BPM) can only measure
the physical position, 𝑥, the normalised position, ̂𝑥, and
momentum, ̂𝑝𝑥, have to be computed in order to obtain ℎ𝑥−.

̂𝑥 can be worked out by simply dividing 𝑥 by √𝛽𝑥(𝑠). On
the other hand, ̂𝑝𝑥 has to be computed using information
from a downstream BPM, by using the fact that for a given
BPM pair, identified as 1 and 2,

̂𝑥2(𝑛) = ̂𝑥1(𝑛) cos(Δ𝜙𝑥) + ̂𝑝𝑥1(𝑛) sin(Δ𝜙𝑥), (5)

where Δ𝜙𝑥 is the phase advance between the two BPMs.
This phase advance can be be directly measured. One should
also note that this equation assumes that there are no cou-
pling sources between the BPMs. From this, one can get

̂𝑝𝑥1(𝑛) = ̂𝑥2(𝑛) − ̂𝑥1(𝑛) cos(Δ𝜙𝑥)
sin(Δ𝜙𝑥) . (6)

ROLL ERROR
In a real machine, the BPMs will not be perfectly aligned

and will have small roll errors around the 𝑠-axis. This will
result in some of the vertical motion being detected as hor-
izontal motion and vice versa. This parasitic motion will
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contribute to the spectral lines that are used to determine the
coupling RDTs as described in [2]. Understanding exactly
how these roll errors can affect the measured RDTs is im-
portant when modelling a realistic machine with alignment
errors. Moreover, it helps understanding potential measure-
ment uncertainties in real machines and under certain cir-
cumstances might make it possible to detect roll errors from
RDT measurements.

The measured horizontal and vertical positions, 𝑋(𝑛) and
𝑌(𝑛) respectively, for a BPM 𝑖 with a roll error of 𝜃 can be
computed using a rotation matrix as

(𝑋𝑖(𝑛)
𝑌𝑖(𝑛)) = ( cos 𝜃𝑖 sin 𝜃𝑖

− sin 𝜃𝑖 cos 𝜃𝑖
) (𝑥𝑖(𝑛)

𝑦𝑖(𝑛)) , (7)

where 𝜃𝑖 is the roll error and 𝑥𝑖(𝑛) and 𝑦𝑖(𝑛) are the ac-
tual horizontal and vertical position obtained by taking the
real parts of Eqs. (3) and (4) and multiplying them by the
square root of the corresponding 𝛽-function. The rotation
from Eq. (7) can be applied to two BPMs, 1 and 2, before
normalising the co-ordinates by dividing by the respective
𝛽-function. Next, the measured momenta �̂�𝑥(𝑛) and �̂�𝑦(𝑛)
can be obtained using Eq. (6). These momenta are combined
with the measured positions to give the measured complex
Courant-Snyder co-ordinates 𝐻𝑥−(𝑛) and 𝐻𝑦−(𝑛).

SOLUTION
The terms for 𝐻𝑥−(𝑛) and 𝐻𝑦−(𝑛) can be factored by their

complex exponentials giving

𝐻𝑥−(𝑛) = 𝐴𝑥√𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0)

−2𝑖𝐹1001,𝑥(𝑠)√𝐼𝑦𝑒𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0)

−2𝑖𝐹1010,𝑥(𝑠)√𝐼𝑦𝑒−𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0)

+𝐵𝑥√𝐼𝑥𝑒−𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0)

(8)

and

𝐻𝑦−(𝑛) = 𝐴𝑦√𝐼𝑦𝑒𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0)

−2𝑖𝐹∗
1001,𝑦(𝑠)√𝐼𝑥𝑒𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0)

−2𝑖𝐹1010,𝑦(𝑠)√𝐼𝑥𝑒−𝑖(2𝜋𝑄𝑥𝑛+𝜙𝑥,0)

+𝐵𝑦√𝐼𝑦𝑒−𝑖(2𝜋𝑄𝑦𝑛+𝜙𝑦,0),

(9)

where 𝐴𝑥, 𝐵𝑥, 𝐴𝑦 and 𝐵𝑦 are constants that depend on the roll
errors, actual RDTs and machine optics and 𝐹1001,𝑥, 𝐹1010,𝑥,
𝐹1001,𝑦 and 𝐹1010,𝑦 are the coupling RDTs as measured us-
ing data from the horizontal and vertical plane respectively.

The full expression for 𝐴𝑥, after linearising for 𝜃1 and 𝜃2
is

𝐴𝑥 = 1 + csc Δ𝜙𝑥
⎛⎜⎜
⎝

(𝑓 ∗
1001 − 𝑓 ∗

1010)√
𝛽𝑦1

𝛽𝑥1
𝑒−𝑖Δ𝜙𝑥𝜃1

−(𝑒−2𝑖Δ𝜙𝑦𝑓 ∗
1001 − 𝑓 ∗

1010)√
𝛽𝑦2

𝛽𝑥2
𝑒−𝑖Δ𝜙𝑦𝜃2

⎞⎟⎟
⎠

,

(10)

which would reduce to unity for 𝜃1 = 𝜃2 = 0, as expected.
Similarly, 𝐵𝑥 can be linearised and expressed as

𝐵𝑥 = − csc Δ𝜙𝑥
⎛⎜⎜
⎝

(𝑓1001 − 𝑓1010)√
𝛽𝑦1

𝛽𝑥1
𝑒−𝑖Δ𝜙𝑥𝜃1

−(𝑓1001 − 𝑒2𝑖Δ𝜙𝑦𝑓1010)√
𝛽𝑦2

𝛽𝑥2
𝑒−𝑖Δ𝜙𝑦𝜃2

⎞⎟⎟
⎠

,

(11)

which reduces to zero in the absence of roll errors.
The linear expression for the measured RDTs are

𝐹1001,𝑥 = 𝑓1001 − csc Δ𝜙𝑥
4

⎛⎜⎜
⎝

√𝛽𝑦1

𝛽𝑥1
𝑒−𝑖Δ𝜙𝑥𝜃1

− √𝛽𝑦2

𝛽𝑥2
𝑒𝑖Δ𝜙𝑦𝜃2

⎞⎟⎟
⎠

,

(12)

𝐹1010,𝑥 = 𝑓1010 − csc Δ𝜙𝑥
4

⎛⎜⎜
⎝

√𝛽𝑦1

𝛽𝑥1
𝑒−𝑖Δ𝜙𝑥𝜃1

− √𝛽𝑦2

𝛽𝑥2
𝑒−𝑖Δ𝜙𝑦𝜃2

⎞⎟⎟
⎠

,

(13)

in both cases giving the correct value when there are no roll
errors.

Taking into account similar expressions for the constants
in the vertical plane, specifically, the measured RDTs would
be

𝐹1001,𝑦 = 𝑓1001 +
csc Δ𝜙𝑦

4
⎛⎜
⎝

√𝛽𝑥1
𝛽𝑦1

𝑒−𝑖Δ𝜙𝑦𝜃1

− √𝛽𝑥2
𝛽𝑦2

𝑒𝑖Δ𝜙𝑥𝜃2
⎞⎟
⎠

(14)

and

𝐹1010,𝑦 = 𝑓1010 −
csc Δ𝜙𝑦

4
⎛⎜
⎝

√𝛽𝑥1
𝛽𝑦1

𝑒−𝑖Δ𝜙𝑦𝜃1

− √𝛽𝑥2
𝛽𝑦2

𝑒−𝑖Δ𝜙𝑥𝜃2
⎞⎟
⎠

.

(15)

𝜋/2 FODO CELL
A special case arises when the two BPMs used for the

measurement are located at the same position with a peri-
odic FODO lattice with 𝜋/2 phase between them. Accelera-
tors often use this kind of optics in their arcs. In this case
Δ𝜙𝑥 = Δ𝜙𝑦 = 𝜋

2 , 𝛽𝑥1 = 𝛽𝑥2 = 𝛽𝑥 and 𝛽𝑦1 = 𝛽𝑦2 = 𝛽𝑦
so that the expressions for the measured RDTs become

𝐹1001,𝑥 = 𝑓1001 + 𝑖
4𝑅(𝜃1 + 𝜃2)

𝐹1010,𝑥 = 𝑓1010 + 𝑖
4𝑅(𝜃1 − 𝜃2)

𝐹1001,𝑦 = 𝑓1001 − 𝑖𝑅
4 (𝜃1 + 𝜃2)

𝐹1010,𝑦 = 𝑓1010 + 𝑖𝑅
4 (𝜃1 + 𝜃2),

(16)

where 𝑅 = √𝛽𝑥
𝛽𝑦

.
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If one wanted to measure the roll angles of the two BPMs
used for the measurement, one could eliminate the unknown
actual RDT by computing the difference between the RDTs
using data from the horizontal and vertical planes to give

Δ𝐹1001 = 𝑖
4 ( 1

𝑅 + 𝑅) (𝜃1 − 𝜃2)

Δ𝐹1010 = 𝑖
4 ( 1

𝑅 − 𝑅) (𝜃1 + 𝜃2).
(17)

These expressions can be combined to solve for 𝜃1 and 𝜃2
giving

𝜃1 = −2𝑅𝑖 (Δ𝐹1001
1 − 𝑅2 + Δ𝐹1010

1 + 𝑅2 )

𝜃2 = −2𝑅𝑖 (Δ𝐹1001
1 − 𝑅2 − Δ𝐹1010

1 + 𝑅2 ) .
(18)

The measured roll angles could be used for alignment or
to compute the actual RDTs from the erroneous measured
RDTs by solving Eq. (16).

IMPLEMENTATION IN SIMULATIONS
To test the accuracy of Eq. (18), a beam measurement

in the Large Hadron Collider (LHC) was simulated using
the MAD-X accelerator code [3]. For the simulation, the
LHC run II injection optics were used for which the phase
advance in the FODO cells is almost exactly 𝜋/2 [4]. The
tracking was performed over 6600 turns using the MAD-X
PTC implementation. After the tracking was completed a
python script was used to manipulate the orbit data recorded
at the two BPMs located next to quadrupoles 29 and 31 left
of interaction point 3. The script read the horizontal and
vertical orbit data and performed a rotation of −0.318 rad and
0.159 rad on the BPMs located next to quadrupoles 29 and
31 respectively, simulating roll errors of these magnitudes.

The resulting manipulated tracking data was analysed with
a modified version of the BetaBeat python library, which
is regularly used to analyse LHC optics measurements [5].
The library was modified so that the BPM pairs used for
RDT measurements in the arcs would skip a BPM so that
the phase advance between them would be 𝜋/2. Moreover,
the code was also modified to compute an estimate of the
roll angle for each BPM pair using the difference between
measured RDTs from horizontal and vertical tracking data
and Eq. (18). The results of this measurement are shown in
Table 1.

Table 1: BPM Rolls Measured from Simulating an Ideal
Machine. BPM Locations Indicate Adjacent Quadrupole
Number Left of Interaction Point 3

BPM Pair Measured / rad Error / %
𝜃1 𝜃2 𝜃1 𝜃2

33 , 31 8.59 × 10−4 0.160 - 0.73
31 , 29 0.162 −0.329 1.5 3.2
29 , 27 −0.329 8.63 × 10−4 3.3 -

From Table 1 one can see that in the case of the LHC,
Eq. (18) is accurate to a few percent. The inaccuracies may

arise from the linearisation of the results, errors in the mea-
sured vertical and horizontal actions, 𝐼𝑥 and 𝐼𝑦, which are
described by constant 𝐴 and 𝐵 but ignored in the deriva-
tion of Eq. (18) or the fact that the LHC lattice does not
have a phase advance of exactly 𝜋/2 by design. To test how
well Eq. (18) holds up in a more realistic measurement, the
tracking was repeated but with a lattice where typical LHC
magnet errors based on magnetic measurements [6] and cor-
rections were applied in MAD-X. A python script was used
to simulate roll errors on the same two BPMs but this time
the errors were reduced to −0.2 rad and 0.1 rad. The results
are shown in Table 2.
Table 2: BPM Rolls Measured from Simulation Data with
Errors. BPM Locations Indicate Adjacent Quadrupole Num-
ber Left of Interaction Point 3

BPM Pair Measured / rad Error / %
𝜃1 𝜃2 𝜃1 𝜃2

33 , 31 −0.0128 0.0824 - 17
31 , 29 0.0862 −0.195 11 2.6
29 , 27 −0.189 −1.55 × 10−5 5.4 -

From Table 2, one can see that in a more realistic simula-
tion, the relative error of the measured roll error significantly
increases. This may be due to the fact that there are actual
coupling sources between the BPM pairs used for the mea-
surement, which were ignored in Eq. (6). These sources
would result in additional errors in the measured RDTs, as
described in [7] and have an impact on Eq. (18). Even in the
absence of BPM roll errors, like in BPM 33, this results in
erroneous roll angle estimates of several mrad. These effects
become more dominant when the roll angle is decreased to
several 100 µrad, at which point the method failed to give
even indicative values of the BPM roll errors. A method
using a single BPM, as described in [2] could be less vul-
nerable to error sources between the BPMs and could be
explored in future studies.

CONCLUSIONS AND OUTLOOK
This paper has introduced a set of equations that describe

how BPM roll angles affect the measurement of resonance
driving terms. It also outlined how this effect could theoret-
ically be used to estimate roll errors in BPMs and demon-
strated this with ideal tracking data from the LHC and rel-
atively large roll angles. The method was less successful
when the tracking data came from a machine with magnet
errors that introduced coupling sources. The effectiveness
of this method method for machines with very low inherent
coupling such as light sources or lepton colliders has to be
further explored. Moreover, the equations for the measured
RDTs can be used to apply roll errors in simulations that aim
to predict the behaviour of a machine with realistic errors
and corrections.
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