

Automated synchrotron lattice design and optimisation using a multi-objective genetic algorithm

Frank Zhang IPAC'21

Co-authors: Suzie Sheehy - University of Melbourne Elena Benedetto - TERA Foundation, CERN

Next Ion Medical Machine Study (NIMMS) Design a compact ion synchrotron for cancer therapy and research.

Key technology: Alternating Gradient Canted Cosine-Theta magnets

- Nested helical coils made from superconductor material.
- Strong combined function fields.
- Capabilities sensitive to tech development.

Compact synchrotron design E. Benedetto

What is the optimum structure of the next-generation hadron therapy machine?

Automated lattice generation

Output

- layer
- $\mathcal{P}(k_0)$
- $\xrightarrow{k_0}$
- $\mathcal{P}(k_1)$
- $\xrightarrow{k_1}$
- $\xrightarrow{l_{seg}}$

Each neural network has a set of unique transformation weights \mathbf{W}_k

- 1. Neural network responds to changes in test particle position and create new lattice segments.
- 2. Output layer contains information about how to deflect the test particle.
- 3. Propagate the test particle using transfer matrices.
- 4. Repeat until the desired length is achieved.

3

Multi-objective genetic algorithm

Random mutation

- 1. Randomly initialise a population of neural networks
- 2. Build the associated lattices by propagating a test particle through each neural network.
- 3. Evaluate the optical functions of each lattice.
- 4. Rank the performance of the networks using constrained-dominated sorting.
- 5. Pick candidates to produce new offsprings.
- 6. Introduce random mutations.
- 7. Sort combined population and pick top candidates for next iteration.

Preliminary results

Constraints:

- 1. Stability criterion, $Tr(\mathcal{M}_{one-turn}) < 2$.
- 2. Horizontal tune, Q1 = 0.1672.
- 3. Vertical tune, $Q^2 = 0.172$.
- 4. Total bending angle, $B_{\rm arc} = 20^{\circ}$.
- 5. Initial($\beta_x, \alpha_x, \beta_y, \alpha_y$) = Final($\beta_x, \alpha_x, \beta_y, \alpha_y$).

Objectives:

- f_1 : Minimise max(β_x).
- f_2 : Minimise max(β_v).
- f_3 : Minimise number of segments.

Hyper-parameters:

- Neural networks with 2 hidden layers and 10 nodes per hidden layer.
- Population size 1000, evolved for 100 iterations.

Conclusion

- Novel automated lattice generation and optimisation algorithm
 - Capable of producing convergent and sensible lattice layouts.
 - Probe the boundary of feasible designs.

- Future works
 - Create closed ring lattices as per NIMMS compact synchrotron requirements.
 - Add constraints from slow extraction and magnet aperture.

Thank you!

Frank Zhang xuanhaoz@student.unimelb.edu.au

