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Next Ion Medical Machine Study (NIMMS) 

Design a compact ion synchrotron for cancer therapy and research. 

Key technology: Alternating Gradient Canted Cosine-Theta magnets 

• Nested helical coils made from superconductor material. 

• Strong combined function fields. 

• Capabilities sensitive to tech development.

for the use of one continuous winding and power supply. In
this scheme the ends of each section nest inside the next,
resulting in an alternating focusing system that is both
compact and efficient (see Fig. 2).
The method for changing the current between sections

makes use of the axial periodicity of CCT windings,
i.e., left or right-handed “corkscrew” winding pattern.
Changing the direction of this period, e.g., switching from
left- to right-handed corkscrew, switches the direction
of the axial current and thus the transverse fields. After
a winding path is optimized to produce a quadrupole
(a method for field description and optimization will be
discussed in Sec. VI), the coil can be split up into sections
of alternating axial period based on the desired integrated
strengths of the focusing and defocusing regions. Once
the coil sections are determined, only a short reverse
bend is needed to transition between regions and maintain
one continuous winding. The result is a highly efficient
transition from focusing to defocusing quadrupole.
We note that the same approach can be used for dipole

windings to produce fields of opposite polarity with
minimal transition lengths. Such fields are of interest,
for example, for “wavelength shifters,” i.e., devices applied
to charged particle beams (typically electrons) that produce
intense, high photon-energy synchrotron radiation with no
net beam steering or displacement.
Figure 3 illustrates the general concept and transition

scheme by showing a single quadrupole winding layer split
into five sections (FDFDF). The defocusing (D) sections
have a reversed axial period, leading to an alternating
quadrupole field profile along the length of the bend
(for details, see Sec. V). A close-up of the coil transition

between a F and D section is shown with the current
direction at the transition location indicated. This scheme
allows the ends of one section to nest inside the next
providing an overall compact and efficient approach for the
producing an alternating focusing system.
An important practical consideration is the actual con-

ductor reversal. Real conductors have a minimum bend
radius, below which internal damage to the superconduct-
ing filaments may occur. One characteristic of the CCT
concept (for dipole or quadrupole fields) is that the rib
thickness, which varies with azimuthal angle, is largest at
the pole; the AG-CCT current reversal can occur at the
pole, making use of the thick rib in that location. For the
conductors envisioned for this application no conductor
damage is anticipated from the reversal. Limiting to the
pole region does not impact the degrees of freedom
available for optics design: the large number of ribs
provides a fine discretization of the longitudinal position
selection for reversal, and the winding pitch angle provides
ultimate fine-tuning if necessary.

IV. ACHROMAT OPTICS OPTIMIZATION FOR A
LARGE MOMENTUM ACCEPTANCE GANTRY

To examine the feasibility of using superconducting AG-
CCT magnets for locally achromatic curved sections, we
want to demonstrate that properly designed, AG-CCT
magnets would enable the proton beam to be scanned over
a large momentum range (Δp=p > !10%) while keeping
the AG-CCT magnet fields fixed. In order to understand the
feasibility, a full gantry optic design was developed that
met the constraints listed in Sec. II. The layout of the gantry

FIG. 2. Coil layers of curved 90° AG-CCT (FDFDF) magnet. Left: The four layers of coils all overlayed. Right: Only about half of two
outer dipole layers (Layer 3 and 4) are shown in order to see the two inner alternating quadrupole layers (Layer 1 and 2).
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Abstract 
We describe an important contribution to accelerator 

magnet technology based on the concept of modulating 
the helical turns of solenoid coils to produce pure 
multipole fields of any order. Calculations show that these 
configurations inherently produce virtually error free 
fields of the desired multipole order in a large fraction of 
the aperture in the two dimensional cross section without 
the presence of iron. The characteristics of one such 
configuration, the double-helix dipole (DHD), are 
described. It is also explained how the novel geometry of 
the double-helix coils simplifies the manufacturing, 
eliminates complex coil parts, and thus significantly 
reduces the cost of the magnets in comparison to the 
conventional cosine theta (racetrack design) coils. This 
has been demonstrated by the design and construction of a 
prototype dipole that produces a 4T field in an 80 mm 
aperture (without iron). 

FOREWORD 

   The double helix coil configuration represents a 
significant advance in accelerator magnet technology over 
the conventional cosine theta type (racetrack design) 
coils. The performance of virtually any type of accelerator 
magnet is improved while the cost of manufacture is 
substantially reduced with this magnet configuration. 
    The double-helix dipole and higher multipole magnets 
have been previously described [1,2,3]. They achieve 
pure multipole fields by the sinusoidal modulation of the 
axial position of the turns of a solenoid wound coil. For 
example, in the case of the dipole, the axial position of the 
conductor path is described as shown in Figure 1 and 
Figure 2 shows a 2-layer double helix dipole magnet 
(DHD).  
   Each turn of the coil can be well approximated as an 
ellipse tilted at an angle α with respect to the axis of the 
coil. This produces a transverse field component 
superimposed on a solenoid field component.  When pairs 
of such windings with opposite tilt angles are assembled 
concentrically, the solenoid field components cancel and 
the dipole components add to produce a pure dipole field. 
   Higher order multipole fields can be obtained by 
modulating the axial position z of the winding according 
to the relation z = h + An sin(nθ), where h is the helical 
advance and An is the amplitude of the modulation.  Using 
a modulation frequency of n = 2, the result is a magnet 
with a pure quadrupole field. Similarly, n = 3 produces a 
sextupole, n = 4 produces an octupole, and so forth.  
    Combined function magnets are also possible by 

modulating the conductor path at 2 frequencies. For 
example, z = h + A0 (sinθ + 0.01 sin3θ) will produce a 
dipole with a small amount of sextupole. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Double helix dipole (DHD) concept uses 
pairs of layers with opposite tilt and current direction. 
Aperture may be circular or elliptical. High field 
values can be obtained by using multiple pairs of 
layers with the transition between layers as shown.  

    
   The high magnetic fields required for future 
accelerators can only be achieved with Nb3Sn, or other 
A15 or HTS type superconductors, which are brittle and 
sensitive to mechanical strain.  The traditional cosine-
theta racetrack dipole and quadrupole configurations 
make it difficult and expensive to employ such 
conductors. The double helix design, however, facilitates 
the use of pre-reacted, brittle conductors for such 
applications. 
    In this paper we describe some of the characteristics of 
double-helix magnets for accelerator applications and 
show how a double-helix dipole model magnet (DHD002) 
was designed and constructed. 
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grant DE-FG02-02ER83360. 
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Figure 1: For the case of the dipole, the z coordinate 

of the conductor path is given by z = h + A0 sinθ  with 

A0 = a / tanα, where a is the radius of the coil 

aperture, α is the tilt angle of the winding with respect 
to the horizontal axis, and h is the helical advance per 
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Proposal: Compact synchrotron and gantry

� C6+ up to 430 MeV/u  
± «aQd RWKeU OLgKW LRQV (He)

� Full treatment in one cycle
± 1010 C6+ (10x10x10 cm3 target)

� SC technology (CCT) makes it compact
± Ring: ~27 m length
± Gantry: 5.3 m height

20.06.18, Archamps, FR E. Benedetto et al., SC synchrotron and gantry based on CCT magnets  2

Compact synchrotron design 
E. Benedetto

What is the optimum structure of the next-generation hadron therapy machine?



Automated lattice generation

1. Neural network responds to changes in 
test particle position and create new 
lattice segments. 

2. Output layer contains information 
about how to deflect the test particle. 

3. Propagate the test particle using 
transfer matrices. 

4. Repeat until the desired length is 
achieved.
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Multi-objective genetic algorithm

1. Randomly initialise a population of neural 
networks 

2. Build the associated lattices by propagating a 
test particle through each neural network. 

3. Evaluate the optical functions of each lattice. 

4. Rank the performance of the networks using 
constrained-dominated sorting. 

5. Pick candidates to produce new offsprings. 

6. Introduce random mutations. 

7. Sort combined population and pick top 
candidates for next iteration.
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is introduced by comparing current population with previously
found best nondominated solutions, the procedure is different
after the initial generation. We first describe the th generation
of the proposed algorithm as shown at the bottom of the page.
The step-by-step procedure shows that NSGA-II algorithm is

simple and straightforward. First, a combined population
is formed. The population is of size . Then, the

population is sorted according to nondomination. Since all
previous and current population members are included in ,
elitism is ensured. Now, solutions belonging to the best non-
dominated set are of best solutions in the combined popu-
lation and must be emphasized more than any other solution in
the combined population. If the size of is smaller then ,
we definitely choose all members of the set for the new pop-
ulation . The remaining members of the population
are chosen from subsequent nondominated fronts in the order of
their ranking. Thus, solutions from the set are chosen next,
followed by solutions from the set , and so on. This procedure
is continued until no more sets can be accommodated. Say that
the set is the last nondominated set beyond which no other
set can be accommodated. In general, the count of solutions in
all sets from to would be larger than the population size.
To choose exactly population members, we sort the solutions
of the last front using the crowded-comparison operator
in descending order and choose the best solutions needed to fill
all population slots. The NSGA-II procedure is also shown in
Fig. 2. The new population of size is now used for se-
lection, crossover, andmutation to create a new population
of size . It is important to note that we use a binary tournament
selection operator but the selection criterion is now based on the
crowded-comparison operator . Since this operator requires
both the rank and crowded distance of each solution in the pop-
ulation, we calculate these quantities while forming the popula-
tion , as shown in the above algorithm.
Consider the complexity of one iteration of the entire algo-

rithm. The basic operations and their worst-case complexities
are as follows:
1) nondominated sorting is ;
2) crowding-distance assignment is ;
3) sorting on is .

The overall complexity of the algorithm is , which is
governed by the nondominated sorting part of the algorithm. If

Fig. 2. NSGA-II procedure.

performed carefully, the complete population of size need
not be sorted according to nondomination. As soon as the sorting
procedure has found enough number of fronts to have mem-
bers in , there is no reason to continue with the sorting pro-
cedure.
The diversity among nondominated solutions is introduced

by using the crowding comparison procedure, which is used in
the tournament selection and during the population reduction
phase. Since solutions compete with their crowding-distance (a
measure of density of solutions in the neighborhood), no extra
niching parameter (such as needed in the NSGA) is re-
quired. Although the crowding distance is calculated in the ob-
jective function space, it can also be implemented in the param-
eter space, if so desired [3]. However, in all simulations per-
formed in this study, we have used the objective-function space
niching.

IV. SIMULATION RESULTS

In this section, we first describe the test problems used to
compare the performance of NSGA-II with PAES and SPEA.
For PAES and SPEA, we have identical parameter settings
as suggested in the original studies. For NSGA-II, we have
chosen a reasonable set of values and have not made any effort
in finding the best parameter setting. We leave this task for a
future study.

combine parent and offspring population
- - - all nondominated fronts of
and

until until the parent population is filled
- - calculate crowding-distance in

include th nondominated front in the parent pop
check the next front for inclusion

Sort sort in descending order using
choose the first elements of

- - use selection, crossover and mutation to create
a new population

increment the generation counter
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Parents Children

a1 a2    a3   a4   a5 a1    a2   a3’ a4’ a5’
⇒

b1 b2 b3 b4 b5 b1 b2 b3’ b4’ b5’

k = 2
Fig. 2 Description of the cross-over operator a′i = b

′
i = (ai+ bi)/2 for i > k

allows us to combine some hopeful schemata and thus
quickly progresses towards the optimal regions of the
search space. The crossover produces new individuals
by combining the information contained in the parent
chromosomes. Good results can be obtained with a ran-
dom matching of the individuals (Goldberg 1989). Each
pair generates two children who replace their parents in-
side the population. Single-point crossover is the simplest
form of this operator: one crossover position is randomly
selected and the variables situated after this point are
exchanged between the individuals, thus producing two
offspring. In Sect. 3.3 we describe the crossover used by
us, which is a particular single-point crossover, shown in
Fig. 2. Other forms of crossover are available, especially
the following ones.

– Multi-point-crossover : m crossover positions are cho-
sen, then the variables between successive crossover
points are exchanged among the two parents to pro-
duce new offspring.
– Uniform crossover : a crossovermask is created at ran-
dom and the parity of the genes (bits) in the mask
indicate which parents will supply the offspring with
which bits.
– Intermediate recombination: that method is usable for
real variables. The values of the offspring variables are
chosen from the values of the parents variables accord-
ing some rule.

chromosome   1 xj(1)
.
.
.

chromosome i xj(i)
.
.
.

chromosome M xj(M)

Fig. 3 Determination of entropy of gene j
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The proposed algorithm

The problem under consideration is the minimization of
a function f

f :D→R , D ⊂Rn , (1)

where n represents the dimension of the function f ; D
represents the search space

D = {x ∈Rn/Ai ≤ xi ≤Bi, i= 1, . . . , n} . (2)

3.1
Structure of the population

Generally a GA starts with a single population, randomly
generated inside the domain D. One of the difficulties
of GAs is that they often converge too quickly and tend
to make quickly uniform the population of the chromo-
somes. Consequently, they are easily trapped into local
minima of the objective function. This difficulty is mainly
due to the premature loss of diversity of the popula-
tion during the search. To solve in part this problem, we
use another organization of the population at the begin-
ning of the algorithm. The overall idea is the following
one: instead of organizing the population in the form of

Parent 1

Parent 2

Offspring 1

Offspring 2
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Preliminary results
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Constraints:

Objectives:

Hyper-parameters: 
• Neural networks with 2 hidden layers and 10 nodes per hidden 

layer. 
• Population size 1000, evolved for 100 iterations.



Conclusion

‣ Novel automated lattice generation and optimisation algorithm 

• Capable of producing convergent and sensible lattice layouts. 

• Probe the boundary of feasible designs. 

‣ Future works 

• Create closed ring lattices as per NIMMS compact synchrotron requirements. 

• Add constraints from slow extraction and magnet aperture.
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