Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPGW012 | Study of Fringe Fields Effects from Final Focus Quadrupoles on Beam Based Measured Quantities | quadrupole, optics, dynamic-aperture, simulation | 90 |
|
|||
Accelerator physics needs advanced modeling and simulation techniques, in particular for beam stability studies. A deeper understanding of the effects of magnetic fields non-linearities will greatly help in the improvement of future colliders design and performance. In *, a new tracking method was proposed to study the effect of the longitudinal dependency of the harmonics on the beam dynamics. In this paper, the study will focus on the effects on observable quantities in beam based measurements, for the case of HL-LHC Inner Triplet and with possible tests in LHC.
* T. Pugnat et al., "Accurate and Efficient Tracking in Electromagnetic Quadrupoles", in Proc. IPAC’18, Vancouver, Canada, June 2018, paper THPAK004, pp. 3207. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW012 | ||
About • | paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPGW041 | Transverse Profile Shaping of a Charged-Particle Beam using Multipole Magnets - Formation of Hollow Beams - | octupole, target, optics, radiation | 184 |
|
|||
The use of multipole magnets enables us to shape the transverse profile of a charged-particle beam into various ones that can never be realized through linear beam optics. To date, the formation of a large-area beam with a uniform transverse intensity distribution has been actually realized using octupole magnets in several accelerator facilities. In this presentation, we demonstrate the formation of different beam profiles using multipole magnets rather than existing rectangular uniform beams. Results of tracking simulations and beam-formation experiments will be shown on the formation of clear-cut beams with different cross-sectional shapes, depending on the order and strength of applied multipole magnets. The dynamic behavior of a beam focused with multipole magnets is also investigated theoretically to better understand the numerical and experimental results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW041 | ||
About • | paper received ※ 19 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPGW044 | Off-Energy Off-Axis Injection with Pulsed Multipole Magnet Into the HALS Storage Ring | injection, storage-ring, kicker, lattice | 187 |
|
|||
As a future Diffraction-Limited Storage Ring (DLSR) at NSRL, the Hefei Advanced Light Source (HALS) has been proposed and has a great progress in the lattice optimization. The nonlinear dynamics is well designed and shows good performance, which makes it easier for beam injection and gives us more choices to design a more suitable injection scheme. In this paper, a new off-energy off-axis pulsed multipole injection scheme is proposed. The off-energy beam is off-axis injected into the acceptance of the storage ring with one or several pulsed multipole kickers and meanwhile the stored beam is almost unaffected during the injection. The injection acceptance of the storage ring is analyzed and the injection scheme is preliminary designed. A series of tracking simulations are carried out and the results are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW044 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPGW095 | Beam Dynamics Simulations with Crab Cavities in the SPS Machine | cavity, simulation, luminosity, optics | 342 |
|
|||
The LHC Upgrade, called High Luminosity LHC, aims to increase the integrated luminosity by a factor of 10. To achieve this, the project relies on a number of key innovative technologies, including the use of superconducting Crab Cavities with ultra-precise phase control for beam rotation. A set of prototype Crab Cavities has been recently installed in the second largest machine of CERN, the Super Proton Synchrotron (SPS), that operated as a test-bed from May to November of 2018. The tight LHC constraints call for axially non-symmetric cavity designs that introduce high order multipole components. Furthermore, the Crab Cavities in the presence of SPS non-linearities can affect the long term stability of the beam. This paper presents how the SPS dynamic aperture is affected for different cavity, machine and beam configurations. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW095 | ||
About • | paper received ※ 06 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMP048 | LHC Doubler: CIC Dipole Technology May Make It Feasible and Affordable | dipole, collider, injection, hadron | 552 |
|
|||
There is new physics-driven interest in the concept of an LHC doubler with collision energy of 30 TeV and high luminosity. The cost-driver challenge for its feasibility is the ring of 16 T dual dipoles. Recent developments in cable-in-conduit (CIC) technology offer significant benefit for this purpose. The CIC windings provide robust stress management at the cable level and facilitate forming of the flared ends without degradation. The CIC windings provide a basis for hybrid windings, in which the innermost layers that operate in high field utilize Bi-2212, the center layers utilize Nb3Sn, and the outer layers utilize NbTi. Cryogen flows through the interior of all cables, so that heat transfer can be optimized throughout the windings. The design of the 18 T dipole and the 23 kA CIC conductor will be presented. Particular challenges for integration in an LHC doubler will be discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP048 | ||
About • | paper received ※ 18 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMP018 | Feasibility Tests of a Vacuum System for SPring-8-II | vacuum, photon, hardware, operation | 1272 |
|
|||
For SPring-8-II, the major upgrade of SPring-8, a test half-cell including permanent/electro magnets and a vacuum system was constructed, and hardware feasibility tests have been performed since 2017. Features of the SPring-8-II vacuum system are 1) introduction of the concept of a stainless steel 12 m-long integral chamber (LIC) with a welded structure, and 2) adoption of ex-situ baking of the chamber. The 12 m LIC with a narrow aperture, flangeless structure and a minimum number of bellows was designed so that the vacuum system could be installed without interference with the magnets of a narrow bore diameter aligned on girders with a severe packing factor. For replacement of the existing system with a new one in a short black-out period, the 12 m LIC is planned to be moved into the accelerator tunnel with keeping ultra-high vacuum (UHV) by closing thin gate valves at both ends, after evacuation to UHV by ex-situ baking and NEG activation. This presentation will overview the vacuum system, mainly the 12 m LIC, developed for the test half-cell, and describe the vacuum performance and the result of the assembly test conducted with the permanent/electro magnets. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP018 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPRB003 | Virtual Shimming and Magnetic Measurements of two Long Period APPLE-II Undulators at the Canadian Light Source | MMI, undulator, polarization, storage-ring | 1679 |
|
|||
Assembly and shimming have completed for a pair of long period APPLE-II type elliptically polarized undulators, QP-EPU180 and EPU142, at the Canadian Light Source. Both devices were shimmed using a weighted cost single-objective simulated annealing algorithm, with shims generated iteratively based on Hall probe and flipping coil data. In this paper we present detailed measurements on the two EPUs, including their magnetic and spectral performance across a wide range of gap and polarization operating points, as well as measured and predicted changes in field due to the virtual shimming. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB003 | ||
About • | paper received ※ 08 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPRB113 | Dynamic Aperture of JLEIC Electron Collider Ring with Errors and Correction | alignment, electron, optics, quadrupole | 1920 |
|
|||
Funding: * This work is supported by the U.S. Department of Energy, Office of Science, and Office of Nuclear Physics under Contracts DE-AC05-06OR23177, DE-AC02-06CH11357, and DE-AC02-76SF00515. Design of the Jefferson Lab Electron-Ion Collider (JLEIC) includes low-beta Interaction Region (IR) and spin rotator optics for high luminosity and polarization. Magnet errors, especially in the high-beta final focus quadrupoles, result in optics perturbations which need to be corrected in order to attain sufficient dynamic aperture (DA). We present design of orbit correction system for the electron ring and evaluate its performance. The DA is then studied including misalignment, magnet strength errors, non-linear field errors, and corrections. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB113 | ||
About • | paper received ※ 16 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMP018 | A Novel Non-Linear Strip-Line Kicker Driven by Fast Pulser in Common Mode | kicker, injection, impedance, dynamic-aperture | 2345 |
|
|||
The next generation storage ring-based light sources adopt multi-bend achromat lattices to achieve a low emittance. The dynamic apertures of these machines are usually less than 10 mm so that the traditional pulsed local bump injection is difficult to achieve. Off-axis injection with a pulsed multipole or a non-linear kicker could be a viable solution which requires a moderate dynamic aperture of a few mm. In this paper, a novel non-linear kicker design is presented. Unlike pulsed sextupole or nonlinear kicker magnet, the nonlinear kicker we proposed is a traveling wave kicker with 2 strip-line electrodes driven by a nanosecond-level fast pulser in common mode. The disturbance to the stored beam is minimal since the perturbation is limited to the target bunch alone.
Work support by NSFC(11475200 and 11675194). |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP018 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMP033 | Slow Extraction Loss Reduction With Octupoles at the CERN SPS | extraction, septum, octupole, proton | 2399 |
|
|||
The powering of octupoles during third-integer resonant slow extraction has been studied and recently tested with beam at the CERN Super Proton Synchrotron (SPS) in order to increase the extraction efficiency and reduce the induced radioactivity of the extraction straight. The octupoles distort the particle trajectories in phase space in such a way that the extracted separatrix is folded, which decreases the particle density impinging the wires of the extraction septum at the expense of increasing the extracted beam emittance. During experimental SPS machine studies a reduction of over 40% in the specific (per extracted proton) beam loss measured at the extraction septum was demonstrated. In this paper, the prerequisite studies needed to safely but efficiently deploy the new extraction scheme in a limited time-frame are described, the experimental results are presented and an outlook is given towards the next steps to bring slow extraction with octupoles into routine operation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP033 | ||
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMP045 | Higher Multipoles in 3rd Integer Resonance Extraction | extraction, octupole, sextupole, simulation | 2437 |
|
|||
The efficiency of slow extraction is becoming a limiting factor, as the demand for delivered beam power is constantly growing. New methods for improving extraction efficiency include folding the extraction separatrix using the higher multipoles. In this report we discuss a simple and effective approach to determine an optimal placement of those multipoles in the storage ring. This allows reduction of the beam losses and therefore, the level of prompt and residual radioactivity in the accelerator components and surrounding buildings by as much as 40% or more. We also explore here manipulating the higher order effects produced in the pure sextupole configurations for the same purpose and demonstrate that similar results can be achieved by only rearranging the sextupole magnets in the lattice. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP045 | ||
About • | paper received ※ 10 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPGW001 | Characterising Injected Beam Dynamics in the Australian Synchrotron Storage Ring | kicker, synchrotron, storage-ring, injection | 2458 |
|
|||
The injected beam trajectory at the Australian Synchrotron needs to be studied to assess the suitability of non-linear kicker installation. To achieve this, multiple diagnostics including cameras and radiochromic films were used to determine the position at several points inside the storage ring tunnels. This was used to infer the momentum data, and then simulated to model the new kicker installation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW001 | ||
About • | paper received ※ 22 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPRB076 | Analysis of Higher Order Multipoles of the 952.6 Mhz RF-Dipole Crabbing Cavity for the Jefferson Lab Electron-Ion Collider | cavity, dipole, HOM, electron | 2996 |
|
|||
The crabbing system is a key feature in the Jefferson Lab Electron-Ion Collider (JLEIC) required to increase the luminosity of the colliding bunches. A local crabbing system will be installed with superconducting rf-dipole crabbing cavities operating at 952.6 MHz. The field non-uniformity across the beam aperture in the crabbing cavities produces higher order multipole components, similar to that which are present in magnets. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system. In this paper, we quantify the multipole components and analyse their effects on the beam dynamics. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB076 | ||
About • | paper received ※ 20 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPRB099 | Status Update of a Harmonic Kicker Development for JLEIC | kicker, cavity, coupling, simulation | 3047 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. An effort to develop the second prototype of the harmonic kicker for the Circulator Cooler Ring (CCR) of the Jefferson Lab Electron-Ion Collider (JLEIC) is under way. After beam dynamics studies and completion of a conceptual RF design of the kicker [1], further progress has been made toward the final mechanical design including the input power coupler (loop) design, tuner ports, multipacting studies. Furthermore, concerning the kicker’s compatibility with beam dynamics, the impact of RF multipole components was investigated and a scheme was developed to cancel out detrimental beam effects. 1. G. Park, et al, The Development of a New Fast Harmonic Kicker for the JLEIC Circulator Cooler Ring, TUPAL068, proceedings of IPAC 2018. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB099 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTS020 | Development of 6D Particle Tracking Code for Particle Therapy System | synchrotron, acceleration, emittance, operation | 3138 |
|
|||
For achieving required specifications of a particle therapy system such as beam profile and beam current, it is important to tune system operation parameters to appropriate values before commissioning. We are developing 6d particle tracking code to analyze whole the through beam motion in a synchrotron from multiturn injection to the RF-knock out extraction for the precise tuning. The code includes effects of multipole magnetic fields and space charge effect. We report on the implementation of the code and discuss about the simulation results. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS020 | ||
About • | paper received ※ 13 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS017 | ILSF Ultralow Emittance Storage Ring Magnets | dipole, quadrupole, sextupole, storage-ring | 4142 |
|
|||
Iranian Light Source Facility (ILSF) is a 3 GeV synchro-tron which is in the basic design phase. The ILSF storage ring (SR) is based on a Five-Bend Achromat lattice providing a low horizontal beam emittance of 270 pm-rad. The ILSF storage ring consists of 100 combined di-pole magnets of 2 types, 240 quadrupoles in 5 families and also 320 sextupoles in 6 families. In this paper, we present some design features of the SR magnets and dis-cuss the detailed physical design of these electromagnets including electrical and cooling calculations. Using POISSON and OPERA codes [1,2], pole and yoke geome-try was developed for each magnet | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS017 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS018 | ILSF Booster Magnets for the New Low Emittance Lattice | booster, sextupole, dipole, quadrupole | 4145 |
|
|||
Iranian light source facility is a new 3rd generation light source with a booster which is supposed to work at 150 keV injection energy and guide the electrons to a 3GeV ring. It consists of 50 combined dipole magnets in one type, 50 quadrupoles and 15 sextupoles in one family. Using POISSON and OPERA3D codes[1,2], pole and yoke geometry was designed for each magnet and also cooling and electrical calculations have been done. ILSF has attempted to mechanical design and build prototype magnets which are ongoing at this stage too. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS018 | ||
About • | paper received ※ 30 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS024 | Magnet Developments and Precise Alignment Schemes for SPring-8-II | alignment, lattice, sextupole, quadrupole | 4158 |
|
|||
The magnet lattice design of the SPring-8 upgrade, SPring-8-II, is a five bend achromat composed of one normal and four longitudinal gradient bending magnets. Permanent magnet has been chosen for both types of the dipoles, and the high gradient multipole magnets are all electromagnets. This presentation will overview the magnet developments and precise alignment schemes for SPring-8-II, focusing specifically on the following features. Temperature insensitive magnetic circuits with a function of fine magnetic field tuning have been developed for the permanent magnet dipoles. Narrow bore multipole magnets with compact coil assemblies have been designed. We optimized the shimming for enough good field regions, and minimized ohmic loss at the coils for suppressing thermal deformation. To improve the accuracy of vibrating wire magnet alignment, practical wire sag distributions have been quantitatively evaluated. In 2018, a test half-cell was constructed by which the feasibilities of the magnets and the overall alignment precisions including the effects of the thermal deformation of magnets, a repeatability of magnet reassembly has been confirmed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS024 | ||
About • | paper received ※ 10 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS044 | Parameter Design of a Rotating Coil Measurement System for Quadrupoles | quadrupole, dipole, focusing, synchrotron-radiation | 4207 |
|
|||
Funding: This work was supported by The National Key Research and Development Program of China; and by National Natural Science Foundation of China (11375068). HUST-PTF is a 5-year National Key Research and Development Program of China which is composed of cyclotron, beamline system, treatment chambers, etc. The beamline system connects the cyclotron and treatment chambers, provides proton beams in adequate size and shape and is crucial to the whole program. Vast dipoles and quadrupoles are employed in the beamline. Aimed at the quadrupoles used in the beamline, this article carried out the research on the high-precision rotating coil magnetic measurements for quadrupoles, including the quadrupole parameters, the principle and structure of the measuring system, measuring procedures and data processing method. Design of the rotating coils and analysis of the main errors are also contained. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS044 | ||
About • | paper received ※ 13 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS048 | Design of Longitudinal Gradient Bending Magnet of HALS | permanent-magnet, synchrotron, lattice, ECR | 4215 |
|
|||
Hefei Advanced Light Source (HALS) is a diffraction limited light source, which was proposed and expected to be built in the next few years by National Synchrotron Radiation Laboratory (NSRL) of China. Just like other new light sources, longitudinal gradient bending magnet (LGB) will be adopted to suppress the beam emittance. The magnet consists of 7 modules with different magnet-ic field. Each module has yoke and poles with the same size but different amount of permanent magnet to gener-ate field gradient. FeNi alloy is used to shunt magnetic flux and thus improve the temperature stability. Correc-tor coil or movable wedge can be used to adjust the field. Impact of magnetization direction error of permanent magnet block and parallelism error of poles on multi-poles is also evaluated. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS048 | ||
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS072 | Field Measurements for a Superconducting Magnet at Room Temperature | vacuum, wiggler, superconducting-magnet, simulation | 4281 |
|
|||
A superconducting multipole wiggler (SMPW) was fabricated at the National Synchrotron Radiation Research Center (NSRRC) and was installed in the Synchrotron Light Research Institute (SLRI). A 3.5 T field strength could be generated by the NbTi coils and the magnetic arrays are immersed in a liquid helium (LHe) bath. A removable mapping chamber, made from thin stainless steel sheets, was developed to allow field mapping in the narrow aperture of the SMPW. The mapping chamber provides a room temperature environment for the magnetic field mapping and enables an easier field scan in the cryostat. The design for the mapping chamber includes a blockage of heat transfer from room temperature to the LHe bath and is strong enough to resist deformations during evacuation. The mechanical design, strain simulation, thermal simulation, dummy test and measurement results with the mapping chamber will be discussed in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS072 | ||
About • | paper received ※ 10 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS076 | Design and Construction of Sextupole Magnet Prototype for Siam Photon Source II Project | sextupole, quadrupole, software, simulation | 4295 |
|
|||
Siam Photon Source II (SPS-II) project in Thailand is the third-generation synchrotron light source. The lattice of the 3 GeV electron storage ring has been designed, consisting of 14 Double Triple Bend Achromat (DTBA) cells with the total circumference of 321.3 m. The storage ring lattice includes 56 bending magnets, 28 combined dipole and quadrupole magnets, 224 quadrupole magnets and 84 multifunction sextupole magnets. This paper presents the design and construction of a sextupole magnet prototype for SPS-II project. Magnet prototype was designed with the magnetic field gradient of 2,030 T/m2 and includes functions of skew-quadrupole, horizontal and vertical correctors. The magnetic core is made of S10C low-carbon steel. A prototype of sextupole magnet has been constructed. All dimensional tolerances are within the range of ±20 µm. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS076 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTS088 | CBETA Permanent Magnet Production Run | permanent-magnet, quadrupole, dipole, undulator | 4318 |
|
|||
214 neodymium permanent magnets have been manufactured for the return loop of the CBETA multi-turn ERL being built at Cornell University. There are 5 types of quadrupole and combined-function gradient magnets using a variant of the circular Halbach design. These are made out of NdFeB material and glued into an aluminium housing with water channels for temperature stabilisation. The NdFeB wedges and magnet construction were done by outside companies, while the final "tuning" using inserts containing 64 iron wires per magnet was done at BNL over a period of about 6 months. Average relative field errors of 2.3·10-4 were achieved on the beam region. The magnet strengths vary by type but are of order 10T/m for quadrupole component and up to 0.3T for the dipole. This paper reports on the field quality and timeline achieved in this production process. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS088 | ||
About • | paper received ※ 11 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRXXPLM2 | Magnet Design for Siam Photon Source II | photon, quadrupole, sextupole, vacuum | 4361 |
|
|||
Siam Photon Source II project has been approved and detailed technical design of the accelerator system is currently in progress. The Double Triple Bend Achromat (DTBA) lattice is implemented in the storage ring design for low emittance and more space for insertion devices. Magnets with moderate to high field requirements have been designed, including combined function magnet with the field gradient of 27.1 T/m, quadrupole magnets with the field gradient up to 60 T/m and multifunction sextupole magnets. This work presents the magnet requirement and specification, design concept, recent simulation results and analysis of the magnetic field quality. A plan for prototype development is also discussed. | |||
![]() |
Slides FRXXPLM2 [1.475 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-FRXXPLM2 | ||
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||