Keyword: superconducting-magnet
Paper Title Other Keywords Page
MOPRB103 A Phase Shifter for Multi-Pass Recirculating Proton LINAC proton, cavity, linac, superconducting-cavity 802
 
  • J. Qiang, L.N. Brouwer, S. Prestemon
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and used computer resources at the National Energy Research Scientific Computing Center.
The multi-pass recirculating proton linac can significantly improve the usage efficiency of RF superconducting cavities by passing the proton beam through the same cavity multiple times. However, in order to achieve the multiple acceleration, synchronous conditions in phase have to be satisfied. In this paper, we propose a fixed field superconducting magnet system as a phase shifter to meet the synchronous conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB103  
About • paper received ※ 09 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP040 Impact of Flux Jumps on High-Precision Powering of Nb3Sn Superconducting Magnets experiment, simulation, controls, superconductivity 1338
 
  • M. Martino, P. Arpaia, S. Ierardi
    CERN, Geneva, Switzerland
 
  Nb3Sn superconducting magnets represent a technology enabler for future high-energy particle accelerators. A possible impediment, though, comes from flux jumps that, so far, could not be avoided by design unlike for NbTi technology. However, the impact of flux jumps on the powering has not been properly investigated to date. Flux jumps appear during current ramps at relatively low value of current and tend to disappear towards nominal current. They are usually detected as voltage jumps between different magnet coils but they might also produce overall voltage jumps across the magnet electrical terminals. Such jumps might perturb the power converter feedback control loop and therefore potentially jeopardize its precision performance during energy ramps. This work aims at : (i) presenting preliminary experimental test results on some HL-LHC Nb3Sn model and prototype magnets, and (ii) attempting to build a simplified electrical model of the flux jumps (with focus only at its interaction with the power converter feedback control loop). Such work is a starting point for outlining possible power converters control strategies able to minimize flux jumps impact on high-precision powering of Nb3Sn superconducting magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP040  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMP029 Design Study of a Compact Superconducting Cyclotron SC240 for Proton Therapy cyclotron, proton, extraction, focusing 3506
 
  • F. Jiang, G. Chen, Y. Chen, K.Z. Ding, J. Li, Y. Song, Z. Wu, J. Zhou
    ASIPP, Hefei, People’s Republic of China
  • Z. Zhong
    HFCIM, HeFei, People’s Republic of China
 
  Funding: National Natural Science Foundation of China under grant No. 11775258 & 11575237; International Scientific and Technological Co-operation Project of Anhui (grant No. 1704e1002207).
A compact AVF cyclotron of 240 MeV is under-designed for proton therapy. In order to reduce the size, the weight and operation cost, two superconducting coils are designed to implement the 2.35T central field. And the magnet weight is about 90 tons. The constant gap between the sectors is considered without deteriorating the beam stability. A dedicated design on extraction zone is performed to make the average field to close the isochronous field. The extraction efficiency is expected higher than 80%, by regulating the 1st harmonic field and arranging the extraction elements properly. In order to avoid the large scale of volume helium explosion in the quench, the low temperature superconducting coil using NbTi/Cu wire is cooled by 4K GM Cryocooler in a helium volume limiting design. The paper will present the physical design of this cyclotron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP029  
About • paper received ※ 17 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS010 Start of the Series Production for the Cryogenic Magnet Corrector Modules of FAIR dipole, quadrupole, operation, sextupole 4124
 
  • E.S. Fischer, A. Bleile, V.I. Datskov, V. Marusov, J.P. Meier, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The fast cycling superconducting synchrotron SIS100 has to deliver high intensity beams for the FAIR project at GSI, Darmstadt. The main dipoles will ramp with 4 T/s up to a maximum magnetic field of 1.9 T where the field gradient of the main quadrupole will reach 27.77 T/m. The integral magnetic field length of the horizontal/vertical steerer and of the chromaticity sextupole will provide 0.403/0.41 m and 0.383 m respectively. We present the status of the first magnets test results as well as the overall procedure of production and testing of the complete series of the cryomagnetic corrector modules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS010  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS011 Design, Production, and Testing of Superconducting Magnets for the Super-FRS dipole, quadrupole, cryogenics, octupole 4128
 
  • H. Müller, E.J. Cho, G. Golluccio, C. Roux, H. Simon, K. Sugita, M. Winkler
    GSI, Darmstadt, Germany
  • H. Allain, M. Daly, P. Grafin, A. Madur, J.-E. Munoz-Garcia, L. Quettier, H. Reymond
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Borceto, G. Drago, G. Valesi, D. Ventura
    ASG, Genova, Italy
  • J. Lucas
    Elytt Energy, Madrid, Spain
  • L.X. Van Den Boogaard
    CERN, Geneva, Switzerland
 
  The Super FRS is a two-stage in flight separator to be built next to the site of GSI, Darmstadt, Germany as part of FAIR (Facility for Anti-proton and Ion Research). Its purpose is to create and separate rare isotope beams and to enable the mass measurement also for very short lived nuclei. Due to its three branches a wide variety of experiments can be carried out in frame of the NUSTAR collaboration. Due to the large acceptance needed, the magnets of the Super-FRS have to have a large aperture and therefore only a superconducting solution is feasible. A superferric design with superconducting coils was chosen in which the magnetic field is shaped by an iron yoke. For the dipoles this iron yoke is at warm and only the coils are incorporated in a cryostat. The multiplets, assemblies of quadrupoles and higher order multipole magnets, are completely immersed in a liquid Helium bath. With the exception of special branching dipoles all superconducting magnets of Super-FRS have been contracted and are being built by Elytt in Spain (dipoles) and ASG in Italy (multiplets). The cold test of all magnets will take place in a dedicated test facility at CERN. This contribution will present the status of manufacturing of dipoles and multiplets, and also gives a short overview on the test facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS011  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS053 Design of a Fast Cycled Low Loss 6 T Model Dipole Cooling at 1.9 K dipole, synchrotron, experiment, operation 4221
 
  • A.D. Kovalenko, V.A.. Gromov, E.E. Perepelkin, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
  • B. Bordini, D. Tommasini
    CERN, Geneva, Switzerland
  • A. Kolomiets
    ITEP, Moscow, Russia
  • S. Kozub, L. Tkachenko
    IHEP, Moscow Region, Russia
 
  The option being considered for the FCC-hh high energy injector is a superconducting synchrotron replacing the CERN SPS. The new machine would operate in a cycled mode also to feed experimental areas, much like the SPS nowadays. Due to this specific cycled operation, innovative design and development approaches is required to cope with the AC losses in the superconducting cables and iron yoke. The research joins experience accumulated at CERN and JINR respectively in the design and operation of large systems operated at 1.9 K and, in fast ramped and cycled magnets. The specified parameters are the following: magnet aperture -80 mm; aperture field - 6 T; field ramp 0.2-0.5 T/s; coil conductor - NbTi; magnetic field homogeneity between 0.12 and 6 T of the order of 5·10-4. The minimization of the cycling losses is particular important. Total thermal losses should be limited to tentatively < 2 W/m at 4.2 K. The magnet design, and the results of preliminary tests on a candidate NbTi-wire for building a model magnet are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS053  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS072 Field Measurements for a Superconducting Magnet at Room Temperature multipole, vacuum, wiggler, simulation 4281
 
  • J.C. Jan, C.-C. Chang, Y.L. Chu, J.C. Huang, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  A superconducting multipole wiggler (SMPW) was fabricated at the National Synchrotron Radiation Research Center (NSRRC) and was installed in the Synchrotron Light Research Institute (SLRI). A 3.5 T field strength could be generated by the NbTi coils and the magnetic arrays are immersed in a liquid helium (LHe) bath. A removable mapping chamber, made from thin stainless steel sheets, was developed to allow field mapping in the narrow aperture of the SMPW. The mapping chamber provides a room temperature environment for the magnetic field mapping and enables an easier field scan in the cryostat. The design for the mapping chamber includes a blockage of heat transfer from room temperature to the LHe bath and is strong enough to resist deformations during evacuation. The mechanical design, strain simulation, thermal simulation, dummy test and measurement results with the mapping chamber will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS072  
About • paper received ※ 10 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXXPLM1 High Field Superconducting Magnet Program for Accelerators in China dipole, proton, collider, background 4359
 
  • Q.J. Xu
    IHEP, Beijing, People’s Republic of China
 
  High field superconducting magnets are crucial for high-energy particle accelerators. IHEP (institute for High Energy Physics, Beijing) is pursuing critical technologies R&D for future circular colliders like the Super Proton Proton Collider (SPPC). SPPC will need thousands of high field (12-20 T) superconducting magnets in around 20 years. A long term R&D roadmap of the advanced high field magnets has been made, aiming to push the technology frontier to the desired level, and a strong domestic collaboration is established, which brings together expertise of Chinese superconductivity community from fields of materials, physics, technology and engineering. The goal is to address prominent scientific and technological issues and challenges for high field applications of advanced superconducting materials. In the past year a model magnet with hybrid coils (NbTi and Nb3Sn ) has been manufactured and tested, reaching a dipole field above 10 T in the two apertures. A full Nb3Sn model has also been fabricated and tested with a coil made of iron based superconductor inserted in the center. An overview of the high field magnet program, R&D status and the future plans will be presented.  
slides icon Slides FRXXPLM1 [10.978 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-FRXXPLM1  
About • paper received ※ 20 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)