WEPMY —  Poster Session   (11-May-16   16:00—18:00)
Paper Title Page
WEPMY002 SLRI Beam Test Facility Development Project 2539
 
  • K. Kittimanapun, N. Chanlek, S. Cheedket, N. Juntong, P. Klysubun, S. Krainara, K. Sittisard, S. Supajeerapan
    SLRI, Nakhon Ratchasima, Thailand
 
  Funding: This work is supported by the National Science and Technology Development Agency (NSTDA) under contract FDA-C0-2558-855-TH.
The SLRI Beam Test Facility (SLRI BTF) is a part of the future upgrades of the SLRI accelerator complex. Upon completion, SLRI BTF will be able to produce electron test beams with the number of electrons ranging from a few to several thousand electrons per bunch. The project is divided into three stages based on the complexity of the electron reduction setups. The simple setup for the initial stage has been implemented without any modifications to the current high-energy beam transport line (HBT) while additional elements together with an existing 4-degree dipole are required for the short-term setup in the second stage. For the last stage, a new dedicated transfer line equipped with a high-resolution energy selector will be constructed to direct the electron beam from the HBT beam line to an experimental station. This project aims to provide a defined number of electrons with maximum energy of 1 GeV for calibration and testing of high energy detectors as well as other beam diagnostic instrumentations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY003 Simulations of the Acceleration of Externally Injected Electrons in a Plasma Excited in the Linear Regime 2542
 
  • N. Delerue, C. Bruni, S. Jenzer
    LAL, Orsay, France
  • S. Kazamias, B. Lucas, G. Maynard
    Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud, Orsay, France
  • M. Pittman
    CLUPS, Orsay, France
 
  We have investigated numerically the coupling between a 10 \si{MeV} electron bunch of high charge (§I{> 100}{pc}) with a laser generated accelerating plasma wave. Our results show that a high efficiency coupling can be achieved using a §I{50}{TW}, §I{100}{μ \meter} wide laser beam, yielding accelerating field above §I{1}{ GV/m}. We propose an experiment where these predictions could be tested.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY004 Development of an Injector and a Magnetic Transfer Line in the Framework of Cilex 2545
 
  • A. Chancé
    CEA/DSM/IRFU, France
  • T. Audet, B. Cros, P. Lee, G. Maynard
    Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud, Orsay, France
  • M. Bougeard, S. Dobosz-Dufrénoy, A. Maitrallain
    CEA, Gif-sur-Yvette, France
  • N. Deleruepresenter
    LAL, Orsay, France
  • O. Delferrière, A. Mosnier, J. Schwindling
    CEA/IRFU, Gif-sur-Yvette, France
  • P. Monot
    CEA/DSM, Gif-sur-Yvette, France
  • A. Specka
    LLR, Palaiseau, France
 
  Funding: Investments for the Future program under reference ANR-10-EQPX-25, by the Triangle de la Physique under contract 2011-086TMULTIPLACCELE, 2012-032TELISA, and by the Labex PALM and P2IO.
Laser plasma accelerators (LPAs) have proven their capability to produce accelerating gradients three orders of magnitude higher than RF cavity-based accelerators. The present challenges of LPAs are to achieve the beam quality and stability required by users and to show the feasibility of plasma staging for high-energy applications. As one of the experiments planned at the PetaWatt laser APOLLON facility, currently under construction in France, aims at testing the two-stage scheme, a dedicated plasma injector which will be used as the first stage has been developed and tested at the UHI100 facility at CEA Saclay. The electron source, as well as the beam characterization line, will be presented and the first results will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY005 Upgrades of the Experimental Setup for Electron Beam Self-modulation Studies at PITZ 2548
 
  • M. Groß, J. Engel, G. Koss, O. Lishilin, G. Loisch, G. Pathak, S. Philipp, R. Schütze, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • R. Brinkmann, J. Osterhoff
    DESY, Hamburg, Germany
  • F.J. Grüner
    CFEL, Hamburg, Germany
  • F.J. Grüner
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • D. Richter
    HZB, Berlin, Germany
  • C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  The self-modulation instability is fundamental for the plasma wakefield acceleration experiment of the AWAKE collaboration at CERN where this effect is supposed to be used to generate proton bunches short enough for producing high acceleration fields. For ease of experimentation it was decided to set up a supporting experiment at the electron accelerator PITZ (Photo Injector Test facility at DESY, Zeuthen site), given that the underlying physics is the same. The goals are to demonstrate and investigate in detail the self-modulation of long electron beams. In 2015 a first set of experiments was conducted utilizing as key elements a novel cross-shaped lithium plasma cell and an ArF excimer laser for plasma generation. No self-modulation was observed yet because of various experimental shortcomings. The properties of the experimental setup were studied in detail and in this contribution we report about the upgrades which are projected to enable the observation of the self-modulation in the upcoming experimental run.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY006 A High Transformer Ratio Scheme for PITZ PWFA Experiments 2551
 
  • G. Loisch, M. Groß, H. Huck, A. Oppelt, Y. Renier, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A. Aschikhin, A. Martinez de la Ossa, J. Osterhoff
    DESY, Hamburg, Germany
  • M. Hochberg, M. Sack
    KIT, Karlsruhe, Germany
 
  In the field of plasma wakefield acceleration (PWFA) significant progress has been made throughout the recent years. However, an important issue in building plasma based accelerators that provide particle bunches suitable for user applications will be a high transformer ratio, i.e. the ratio between maximum accelerating field in the witness and maximum decelerating fields in the driver bunch. The transformer ratio for symmetrical bunches in an overdense plasma is naturally limited to 2*. Theory and simulations show that this can be exceeded using asymmetrical bunches. Experimentally this was proven in RF-structures**, but not in PWFA. To study transformer ratios above this limit in the linear regime of a plasma wake, an experimental scheme tailored to the unique capabilities of the Photoinjector Test Facility Zeuthen PITZ, a 20-MeV electron accelerator at DESY, is being investigated. This includes analytical plasma wakefield calculations, numerical simulations of beam transport and plasma wakefields, as well as preparatory studies on the photocathode laser system and the plasma sources.
* K. L. F. Bane, P. B. Wilson and T. Weiland, AIP Conference Proceedings 127, p. 875, 1984
** C. Jing et al., Physical Review Letters 98, 144801, 2007
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY007 Plasma Density Profile Characterization for Resonant Plasma Wakefield Acceleration Experiment at SPARC_LAB 2554
 
  • F. Filippi
    INFN-Roma1, Rome, Italy
  • M.P. Anania, A. Biagioni, E. Chiadroni, M. Ferrario
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • F. Filippi, A. Giribonopresenter, A. Mostacci, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  • F. Filippi, A. Giribonopresenter, A. Mostacci, L. Palumbo
    INFN-Roma, Roma, Italy
  • A. Giribonopresenter
    University of Rome "La Sapienza", Rome, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  New generation of particle accelerators is based on the excitation of large amplitude plasma waves driven by either electron or laser beams, named as Plasma Wakefield Accelerator (PWFA) and Laser Wakefield Accelerator (LWFA), respectively. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of externally injected high brightness electron beams through both schemes. In particular, in the so-called resonant PWFA a train of more than two driver electron bunches generated with the laser comb technique resonantly excites wakefields into the plasma, the last bunch (witness) is injected at the proper accelerating phase gaining energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The desired density can be achieved with a correct shaping of the capillary in which plasma is formed. The measurements of plasma density, as well as other plasma characteristics, can be performed with spectroscopic measurements of the plasma self emitted light. The measurement of density distribution for hydrogen filled capillaries is here reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY008 Towards Awake Applications: Electron Beam Acceleration in a Proton Driven Plasma Wake 2557
 
  • E. Adli
    University of Oslo, Oslo, Norway
 
  The first phases of the AWAKE experiment will study the wake structure and the potential for electron acceleration in a self-modulated proton driver. In AWAKE Run 2, expected to start after the LHC Long Shut Down 2, electron beam acceleration will be studied. Using a single proton driver and a long acceleration stage, an electron bunch will be accelerated to high energies. Demonstrating beam quality preservation and scalable plasma sources will be a significant step towards using proton driven plasma for applications. We report on the plans and preparations for AWAKE Run 2.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY009 Transverse Tolerances of a Multi-Stage Plasma Wakefield Accelerator 2561
SUPSS034   use link to see paper's listing under its alternate paper code  
 
  • C.A. Lindstrøm, E. Adli, J. Pfingstner
    University of Oslo, Oslo, Norway
  • E. Marín, D. Schulte
    CERN, Geneva, Switzerland
 
  Funding: This work is supported by the Research Council of Norway.
Plasma wakefield acceleration (PWFA) provides GeV/m-scale accelerating fields, ideal for applications such as a future linear collider. However, strong focusing fields imply that a transversely offset beam with an energy spread will experience emittance growth from the energy dependent betatron oscillation. We develop an analytic model for estimating tolerances from this effect, as well as an effective simplified simulation tool in Elegant. Estimations for a proposed 1 TeV PWFA linear collider scheme indicate tight tolerances of order 40 nm and 1 μrad in position and angle respectively.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY010 Considerations for a Drive Beam Scheme for a Plasma Wakefield Linear Collider 2565
 
  • J. Pfingstner, E. Adli, C.A. Lindstrøm
    University of Oslo, Oslo, Norway
  • E. Marín, D. Schulte
    CERN, Geneva, Switzerland
 
  The potential for high average gradients makes plasma wakefield acceleration (PWFA) an attracting option for future linear colliders. For a beam-driven PWFA collider a sequence of cells has to be supplied with synchronised drive beam bunches. This paper is concerned with the generation, transport and distribution of these drive beam bunches in a so-called drive beam complex for a 3 TeV collider. Based on earlier concepts, several modifications are suggested. The new design includes a superconducting linac and an optimised bunch delay system with a tree structure. To verify the feasibility for the overall complex, a lattice design and tracking studies for the critical bending arc subsystem are presented. Also the feasibility of a compact bunch separation system is shown. The result of these efforts is a drive beam complex that is optimised for construction cost and power efficiency that favours unified lattice solutions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY011 Compact Laser Plasma Accelerator at Peking University 2569
SUPSS033   use link to see paper's listing under its alternate paper code  
 
  • L.R.F. Li, J.E. Chen, S.C. Gao, Y.X. Geng, Q. Liao, J B. Liu, H.Y. Lu, X.Q. Yan, Y.Y. Zhao, Y.Y. Zhu
    PKU, Beijing, People's Republic of China
  • Y.R. Shou
    Peking University, School of Physics, Beijing, People's Republic of China
 
  A brand new and solely accelerator based on the interaction physics of high intensity ultrafast laser and plasmas, named Compact LAser Plasma Accelerator (CLAPA), was recently built. The laser system can deliver 5J/25fs @ 800nm pulses with contrast of 10-10. Experiments on electron acceleration is scheduled with the regime of laser wakefield acceleration. The charge and the energy spread of the accelerated electron beams will be concerned mainly. The experiments is planned with gas targets with single and dual stages. For the single stage acceleration, we will try density ramp injection and a loose focusing for a monoenergetic electron beam with more charge for some applications. With the PIC simulations and new injection methods, it is expected to generate GeV/tens pC electron beam with an energy spread of <1%. For the two stage cascaded acceleration, we will focus on the staged acceleration and control of the injection of the second stage, as well as the acceleration length of the second stage by manipulating the parameters of the gas target as well as the laser itself. The far future goal of the second plan is to develop a designable and applicable accelerators.
* W.Lu, Phys. Rev.ST Accel. Beams 10.061301 (2007)
** J. Faure, Nature 431, 541 (2004)
***J.S. Liu, Phys. Rev. Lett 107, 035001 (2011)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY013 A Spatially Separated Two Frequency RF Gun Design for Beam Brightness Improvement 2572
 
  • Z. Zhang, C.-X. Tang, Z. Zhang
    TUB, Beijing, People's Republic of China
  • H.J. Qian
    LBNL, Berkeley, California, USA
 
  Recent theoretical and experimental studies shows that transverse beam brightness of photoinjector can be improved by cigar beam photoemission, and beam peak current are then increased with a RF buncher following the gun. We apply this concept to a S-band photoinjector by adding a harmonic RF buncher closely to a S-band RF gun, forming a compact spatially separated two frequency RF gun, targeting a 200 pC beam with emittance < 0.2 mm·mrad and 30 A peak current. Both S/X-band and S/C-band combinations are considered, and an optimized solution with 30 A peak current and 0.1 mm·mrad slice emittance are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY014 Feasibility Study of a Laser-Driven High Energy Electron Acceleration in a Long Up-Ramp Density 2576
 
  • M. Kim, J. Kim, S.W. Lee, I.H. Nam, H. Suk
    GIST, Gwangju, Republic of Korea
 
  Laser-driven wakefield acceleration (LWFA) has received much attention as it can produce GeV-level high-energy electrons in cm-scale distance*. However, the accelerated electron energies are still limited by several factors, especially by the dephasing problem that is caused by different velocities between the plasma wake wave and the accelerated electron beam. In order to increase the acceleration length restricted by the dephasing problem**, we developed a gas-cell with density-tapering, which is realized by applying different gas pressures into two gas inlets in the gas cell. In this way, the gas density and gradient can be easily controlled in the gas cell. We used the density-tapered gas-cell for laser wakefield acceleration experiments in our laboratory with a 20 TW/40 fs Ti:sapphire laser system***. The results show that the electron energy can be significantly enhanced (about twice) with the tapered density gas-cell, compared with a uniform density conventional gas-cell. In this presentation, we show the experimental results and comparison with two-dimensional (2-D) particle-in-cell (PIC) simulation results.
* W. P. Leemans et al. Phy. Rev. Lett. 113, 245002 (2014).
** M. S. Kim et al. Appl. Phy. Lett. 102, 204103 (2013).
*** I. H. Nam et al. Curr. Appl. Phy. 15, 468 (2015).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY015 Numerical Studies on Tunable Coherent Radiations with a Laser-Plasma Accelerator 2579
 
  • J. Kim, M. Kim, I.H. Nam, H. Suk
    GIST, Gwangju, Republic of Korea
  • M.S. Hur
    UNIST, Ulsan, Republic of Korea
 
  Generation of tunable coherent radiation is numerically investigated via the two-dimensional particle-in-cell (2D-PIC) code developed by UNIST* and SIMPLEX developed by Spring-8. The electron beams can be produced by the laser-driven wakefield acceleration technique. The electron beam energy can be easily adjusted between 450 MeV and 800 MeV with a tapered density plasma on the order of 1×1018 cm-3 while the driving laser power is fixed, and the high-energy electron beams can be sent through the undulator arrays for the coherent light emission. The energy-controllable electron bunches can provide an opportunity to control the radiation wave-length with the fixed gap undulators. For the tapered density profile, a capillary cell with two gas inlets can be used. In this paper, we show some simulation and numerical research results regarding these issues, which reveal the possibility for a tunable light source in the soft X-ray regime.
* M. S. Hur, H. Suk, Phys. Plasmas 18 033102 (2011).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY016 Development of RF System for Measuring Plasma Density Modulation of Proton Beam-driven Plasma Wakefield 2582
SUPSS031   use link to see paper's listing under its alternate paper code  
 
  • S.Y. Kim, M. Chung
    UNIST, Ulsan, Republic of Korea
 
  Proton beam-driven plasma wakefield acceleration technique using the proton beam of Super Proton Syn-chrotron (SPS) at CERN has been actively researched these days. Plasma density modulation due to the proton beam will generate high-gradient's electric field within the modulated plasma. The key role is Self-Modulation Instability (SMI) of the long proton beam. To understand SMI phenomena, we have studied RF system such as heterodyne system for measuring modulated plasma den-sity caused by the SMI. In this work, we design the details of the RF system and optical system of focusing millimetre-sized electromagnetic wave using CODE V and plasma-electromagnetic wave interactions using simulation tools.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY017 Numerical Studies of Self Modulation Instability in the Beam-driven Plasma Wakefield Experiments 2585
SUPSS035   use link to see paper's listing under its alternate paper code  
 
  • K. Moon, M. Chung
    UNIST, Ulsan, Republic of Korea
 
  Proton beam-driven plasma wakefield acceleration was recently proposed as a way to bring electrons to TeV energy range in a single plasma section. When the ultra-relativistic long proton beam propagates into the plasmas, this bunch splits into many small bunches. This phenomenon is known as a Self-Modulation Instability (SMI), and its characteristics depend on the ratio of bunch length and plasma wavelength. In this study, we first introduce a Particle-In-Cell (PIC) code WARP, focusing on the basis of parallel version structure. Through numerical simulations using the WARP, we investigate the characteristics of the SMI and propose possible experimental setup at the Injector Test Facility (ITF) of Pohang Accelerator Laboratory (PAL). Also, we present dependencies of the witness beam quality on both the driver beam and plasma parameters.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY019 AWAKE, the Advanced Proton Driven Plasma Wakefield Acceleration Experiment 2588
 
  • P. Muggli
    MPI, Muenchen, Germany
  • C. Braccopresenter
    CERN, Geneva, Switzerland
 
  The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment is currently being installed in the former CNGS facility and will use the 400 GeV/c proton beam bunches from the SPS to drive the wakefields in the plasma. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated with GeV/m gradients. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY020 Integration of a Terawatt Laser at the CERN SPS Beam for the AWAKE Experiment on Proton-Driven Plasma Wake Acceleration 2592
 
  • V. Fedosseev, M. Battistin, E. Chevallay, N. Chritin, V. Clerc, T. Feniet, F. Friebel, F. Galleazzi, P. Gander, E. Gschwendtner, J. Hansen, C. Heßler, M. Martyanov, A. Masi, A. Pardons, F. Salveter, K.A. Szczurek
    CERN, Geneva, Switzerland
  • M. Martyanov, J.T. Moody, P. Muggli
    MPI-P, München, Germany
 
  In the AWAKE experiment a high-power laser pulse ionizes rubidium atoms inside a 10 m long vapor cell thus creating a plasma for proton-driven wakefield acceleration of electrons. Propagating co-axial with the SPS proton beam the laser pulse seeds the self-modulation instability within the proton bunch on the front of plasma creation. The same laser will also generate UV-pulses for production of a witness electron beam using an RF-photoinjector. The experimental area formerly occupied by CNGS facility is being modified to accommodate the AWAKE experiment. A completely new laser laboratory was built, taking into account specific considerations related to underground work. The requirements for AWAKE laser installation have been fulfilled and vacuum beam lines for delivery of laser beams to the plasma cell and RF-photoinjector have been constructed. First results of laser beam hardware commissioning tests following the laser installation will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY021 Beam-Plasma Interaction Simulations for the AWAKE Experiment at CERN 2596
 
  • A.V. Petrenko, E. Gschwendtner, G. Plyushchev, M. Turner
    CERN, Geneva, Switzerland
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • K.V. Lotov, A. Sosedkin
    NSU, Novosibirsk, Russia
  • G. Plyushchev
    EPFL, Lausanne, Switzerland
  • M. Turner
    TUG/ITP, Graz, Austria
 
  The AWAKE experiment at CERN will be the first proof-of-principle demonstration of the proton-driven plasma wakefield acceleration using the 400 GeV proton beam extracted from the SPS accelerator. The plasma wakefield will be driven by a sequence of sub-millimeter long micro-bunches produced as a result of the self-modulation instability (SMI) of the 12 cm long SPS proton bunch in the 10 m long rubidium plasma with a density corresponding to the plasma wavelength of around 1 mm. A 16 MeV electron beam will be injected into the developing SMI and used to probe the plasma wakefields. The proton beam self-modulation in a wide range of plasma densities and gradients have been studied in detail via numerical simulations. A new configuration of the AWAKE experiment with a small plasma density step is proposed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY022 Homogeneous Focusing of Train of Short Relativistic Electron Bunches by Plasma Wakefield 2599
SUPSS032   use link to see paper's listing under its alternate paper code  
 
  • V.I. Maslov, I.N. Onishchenko
    NSC/KIPT, Kharkov, Ukraine
  • I.P. Levchuk (Yarovaya)presenter
    KhNU, Kharkov, Ukraine
 
  The focusing of bunches by wakefield, excited in plasma by resonant sequence of relativistic electron bunches (repetition frequency of the bunches coincides with the plasma frequency), is inhomogeneous. In this paper we investigate wakefield plasma lens, in which all bunches of sequence are focused identically and uniformly, for short relativistic electron bunches. For this it is necessary that the charge of 1-st bunch is smaller in determined times than the charges of the other bunches, the interval between back front of 1-st bunch and 1-st front of 2-nd bunch equals determined value, the interval between back front of N-th bunch and 1-st front of (N+1)-th bunch for all other bunches is multiple to excited wavelength. It is shown that only 1-st bunch is in finite Ez≠0. Other bunches are in zero longitudinal electrical wakefield. Hence the 1-st bunch interchange by energy with wakefield. The subsequent bunches don't interchange by energy with wakefield and the amplitude of wakefield doesn't change along sequence. Radial wake force Fr in regions, occupied by bunches, is approximately constant along bunches.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY023 Self-focusing and Wakefield-focusing of Relativistic Electron Bunches in Plasma 2602
 
  • V.I. Maslov, I.P. Levchuk (Yarovaya)presenter, I.N. Onishchenko
    NSC/KIPT, Kharkov, Ukraine
 
  It was shown that at the wakefield excitation by electron bunch, the length of which is equal to half of the wavelength, the ratio of wakefield focusing to self-focusing is large at the end of the bunch, the shape of which is such that it falls from the current maximum value in the head of the bunch to zero at the end of the bunch. However, the ratio of wakefield focusing to self-focusing tends to zero at the end of the bunch, if the current increases along the bunch from zero in the head of the bunch to a maximum value at the end of the bunch. In the case of homogeneous bunch with sharp edges, the length of which is several plasma wavelength, the self-focusing force Fs is constant along the bunch, and wakefield force of focusing changes from -Fs to Fs. In the case of homogeneous bunch with precursor of half current and length, equal to half of wavelength, focusing of bunch is determined by the homogeneous self-focusing force and wakefield focusing force equals zero. Cases of rectangular and Gaussian bunches, the length of which is equal to half of wavelength, also were considered.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY024 A Spectrometer for Proton Driven Plasma Accelerated Electrons at AWAKE - Recent Developments 2605
 
  • L.C. Deacon, S. Jolly, F. Keeble, M. Wing
    UCL, London, United Kingdom
  • B. Biskup, A. Goldblatt, S. Mazzoni, A.V. Petrenko
    CERN, Geneva, Switzerland
  • B. Biskup
    Czech Technical University, Prague 6, Czech Republic
  • M. Wing
    DESY, Hamburg, Germany
  • M. Wing
    University of Hamburg, Hamburg, Germany
 
  The AWAKE experiment is to be constructed at the CERN Neutrinos to Gran Sasso facility (CNGS). This will be the first experiment to demonstrate proton-driven plasma wakefield acceleration. The 400 GeV proton beam from the CERN SPS will excite a wakefield in a plasma cell several meters in length. To probe the plasma wakefield, electrons of 10–20 MeV will be injected into the wakefield following the head of the proton beam. Simulations indicate that electrons will be accelerated to GeV energies by the plasma wakefield. The AWAKE spectrometer is intended to measure both the peak energy and energy spread of these accelerated electrons. Results of beam tests of the scintillator screen output are presented, along with tests of the resolution of the proposed optical system. The results are used together with a BDSIM simulation of the spectrometer system to predict the spectrometer performance for a range of possible accelerated electron distributions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY025 iMPACT, Undulator-Based Multi-Bunch Plasma Accelerator 2609
 
  • O. Mete Apsimon, K. Hanahoe, G.X. Xia
    UMAN, Manchester, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
  • J.D.A. Smith
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by the Cockcroft Institute Core Grant and STFC.
The accelerating gradient measured in laser or electron driven wakefield accelerators can be in the range of 10-100GV/m, which is 2-3 orders of magnitude larger than can be achieved by conventional RF-based particle accelerators. However, the beam quality preservation is still an important problem to be tackled to ensure the practicality of this technology. In this global picture, the main goals of this study are planning and coordinating a physics program, the so-called iMPACT, that addresses issues such as emittance growth mechanisms in the transverse and longitudinal planes through scattering from the plasma particles, minimisation of the energy spread and maximising the energy gain while benchmarking the milestones. In this paper, a summary and planning of the project is introduced and initial multi-bunch simulations were presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY026 A Gas-filled Capillary Based Plasma Source for Wakefield Experiments 2613
 
  • O. Mete Apsimon, K. Hanahoe, T.H. Pacey, G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work is supported by the University of Manchester Strategic Grant.
A plasma medium can be formed when a gas is discharged via an applied high voltage within a capillary tube. A high voltage discharge based plasma source for plasma wake- field acceleration experiment is being developed. Design considered a glass capillary tube with various inner radii. Glass was preferred to sapphire or quartz options to ease the machining. Electrodes will be attached to the tube using a sealant resistant to high vacuum conditions and baking at high temperatures. Each electrode will be isolated from the neighbouring one using nuts or washers from a thermoplastic polymer insulator material to prevent unwanted sparking outside of the tube. In this paper, general design considerations and possible working points of this plasma source are presented for a range of plasma densities from 1×1020 to 1×1022 m&#8722;3. Consideration was also given to plasma density diagnostic techniques due to critical dependence of accelerating gradient on plasma density.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY027 Feasibility Study of Plasma Wakefield Acceleration at the CLARA Front End Facility 2617
 
  • K. Hanahoe, R.B. Appleby, Y. M. Li, T.H. Pacey, G.X. Xia
    UMAN, Manchester, United Kingdom
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
  • B. Kyle
    University of Manchester, Manchester, United Kingdom
  • O. Mete Apsimonpresenter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.D.A. Smith
    Tech-X, Boulder, Colorado, USA
 
  Funding: Cockcroft Institute Core Grant and STFC
Plasma wakefield acceleration has been proposed at the CLARA Front End (FE) facility at Daresbury Laboratory. The initial phase of the experiment will acceleration of the tail of a single electron bunch, and the follow-up experiment will study preserving a high quality beam based on a two-bunch acceleration scenario. In this paper, a concept for the initial experiment is outlined and detailed simulation results are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY031 The Production of Negative Carbon Ions with a Volume Cusp Ion Source 2620
 
  • S.V. Melanson, M.P. Dehnel, C. Hollinger, P.T. Jackle, J.A. Martin, D.E. Potkins, T.M. Stewart, J.E. Theroux
    D-Pace, Nelson, British Columbia, Canada
  • T.L. Jones, H.C. McDonald, C. Philpott
    BSL, Auckland, New Zealand
 
  Recent progress has been made at the newly commissioned Ion Source Test Facility (ISTF). Phase II, the final phase of the project, was completed in March 2016. First measurements were performed with D-Pace's TRIUMF licensed H ion source. The source was first characterized with H and an extraction study of the H ions was performed. A study of the production of heavy negative ions with volume cusp sources was started. Measurements with helium revealed no negative ions were extracted. Negative carbon ions were produced with acetylene. The beam composition has been analysed with a spectrometer.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY032 A PID Control Algorithm for Filament-Powered Volume-Cusp Ion Sources 2623
 
  • S.V. Melanson, M.P. Dehnel, C. Hollinger, J.A. Martin, D.E. Potkins
    D-Pace, Nelson, British Columbia, Canada
  • C. Philpott
    BSL, Auckland, New Zealand
 
  Volume-cusp ion sources require a fast and precise control algorithm to ensure the arc current, and thus the beam current is stable for high-power industrial DC operation. Using D-Pace's TRIUMF [1] licensed filament-powered H volume-cusp ion source, a proportional-integral-derivative (PID) control algorithm was implemented that provides a peak-to-peak beam current variation of ±0.45 % and a root mean square error of 0.025 mA for 10.16 mA of beam current over 60 minutes. The PID parameters were tuned for different set points and the performance of the algorithm is compared for the different settings. Measured arc current stability, and measured beam current as a function of time are presented and the algorithm utilized is described in detail.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY033 Intermediate Commissioning Results of the 70 mA/50 keV H+ and 140 mA/100 keV D+ ECR Injector of IFMIF/LIPAC 2625
 
  • B. Bolzon, N. Chauvin, S. Chel, R. Gobin, F. Harrault, F. Senée, M. Valette
    CEA/DSM/IRFU, France
  • J.M. Ayala, J. Knaster, A. Marqueta, K. Nishiyama, Y. Okumura, M. Perez, G. Pruneri, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
  • P.-Y. Beauvais, H. Dzitko, D. Gex, G. Phillips
    F4E, Germany
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Cara, R. Heidinger
    Fusion for Energy, Garching, Germany
  • R. Ichimiya, A. Ihara, Y. Ikeda, A. Kasugai, T. Kikuchi, T. Kitano, M. Komata, K. Kondo, S. Maebara, S. O'hira, M. Sugimoto, H. Takahashi, H. Usami
    JAEA, Aomori, Japan
  • K. Sakamoto
    QST, Aomori, Japan
  • K. Shinto
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
 
  The LIPAc accelerator aims to operate 125 mA/CW deuteron beam at 9 MeV to validate IFMIF's accelerators that will operate in CW 125 mA at 40 MeV. The different subsystems of LIPAc have been designed and constructed mainly by European labs and are being installed and commissioned in Rokkasho Fusion Center. The 2.45 GHz ECR injector developed by CEA-Saclay is designed to deliver 140 mA/100 keV CW D+ beam with 99% gas fraction ratio. Its LEBT presents a dual solenoid focusing system to transport and match the beam into the RFQ. Its commissioning continues in 2016 in parallel with the RFQ installation. The normalized RMS emittance at the RFQ injection cone is to be within 0.25π mm·mrad to allow 96% transmission through the 9.81 m long RFQ. In order to avoid activation during commissioning, an equal perveance H+ beam of half current and half energy as nominal with deuterons is used. In this article, the commissioning results with 110 mA/100 keV D+ beam and 55 mA/50 keV H+ beam are first reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY035 Preliminary Commissioning Results of the Proton Source for ESS at INFN-LNS 2628
 
  • L. Celona, L. Allegra, A. Amato, G. Calabrese, A.C. Caruso, G. Castro, F. Chines, G. Gallo, S. Gamminopresenter, O. Leonardi, A. Longhitano, G. Manno, S. Marletta, D. Mascali, A. Maugeri, M. Mazzaglia, L. Neri, S. Passarello, G. Pastore, A. Seminara, A.S. Spartà, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
  • S. Di Martino, P. Nicotra
    Si.A.Tel SRL, Catania, Italy
  • A. Longhitano
    ALTEK, San Gregorio (CATANIA), Italy
  • G. Torrisi
    Universitá Mediterranea di Reggio Calabria, Reggio Calabria, Italy
 
  At Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) - the commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) is under way. Preliminary results of plasma diagnostics collected on a testbench called "Flexible Plasma Trap" (FPT) will be correlated to the peculiarities of the magnetic system design and of the microwave injection setup with a view of the possible implications on the beam extraction system. The status of the costruction is presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY036 Laser Ablation Ion Source for Highly Charge-State Ion Beams 2632
SUPSS037   use link to see paper's listing under its alternate paper code  
 
  • N. Munemoto, K. Horioka
    TIT, Yokohama, Japan
  • K. Okamura, S. Takano, K. Takayama
    KEK, Ibaraki, Japan
  • K. Okamura, K. Takayama
    Sokendai, Ibaraki, Japan
 
  The KEK Laser ablation ion source (KEK-LAIS) is un-der development in order to generate highly ionized metal and fully ionized carbon ions for future applica-tions*. Laser ablation experiments have been carried out by using Nd-YAG laser (0.75 J/pulse, 20 ns) at the KEK test bench. Basic parameters such as a charge-state spec-trum and momentum spectrum of the plasma and extract-ed ion beam current have been obtained. Extraction of C ions from the LAIS is described.
* N.Munemoto et al., Rev. Sci. Inst. 85, 02B922 (2014)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY037 Cold Model Cavity for 20-K Cryocooled C-band Photocathode RF Gun 2635
 
  • T. Tanaka, M. Inagaki, R. Nagashima, K. Nakao, K. Nogamipresenter, T. Sakai, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cryocooled 2.6-cell C-band photocathode RF gun is under development at Nihon University in collaboration with KEK. The RF characteristics of a pillbox-type 2.6-cell C-band RF cavity at 20 K were in agreement with the theoretical predictions. The result of the cold test for a cavity with the input coupler confirmed the same characteristics. Based on these results a refined cold model of the 20-K cryocooled photocathode RF gun has been designed using SUPERFISH and CST-STUDIO. The separation between the TM01 pi and the TM01 half-pi modes has been increased from 20 MHz to 52 MHz by extending the diameter of the cavity iris and reducing the disk thickness. The 2.6-cell structure has been modified from pillbox to ellipsoid-like type. The end-plate of the 0.6-cell cavity has a center hole for bead-pull measurements of the on-axis electric filed through the entire structure. Mounting of a photocathode assembly in the end-plate has not been considered, since the purpose is solely to measure the low-power and low-temperature RF characteristics. A new design for the input coupler has been employed. The cavity will be completed early in 2016.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY038 Optimization of C-band RF Input Coupler as a Mode Converter for 20-K Cryocooled Photocathode RF Gun 2638
 
  • T. Tanaka, M. Inagaki, R. Nagashima, K. Nakao, K. Nogami, T. Sakaipresenter, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
Development of a cryocooled 2.6-cell C-band photocathode RF gun has been conducted at Nihon University in collaboration with KEK. An RF mode converter from square TE10 to circular TM01 mode has been employed as an RF input coupler that has a coupling coefficient of approximately 20 at 20 K to the 2.6-cell accelerating structure. In the previous design, the circular waveguide in the mode converter formed part of the accelerating cavity. After the cold test of the cavity completed in 2014, the coupler design was modified to work as a pure mode converter with a VSWR of 1 at 5712 MHz. From the design simulation using CST-STUDIO, the insertion loss in the converter is 0.2 %. The TM010 and TM011 modes excited in the circular waveguide were separated by several ten MHz from the accelerating frequency. The simulation has suggested that the amplitude of the transverse electric filed on the axis in the circular waveguide is reduced to approximately 2 % of that in the longitudinal direction.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY039 Time Response Measurements for Transmission-Type GaAs/GaAsP Superlattice Photocathodes 2641
 
  • N. Yamamoto, X.J. Jin
    KEK, Ibaraki, Japan
  • M. Hosaka, Y. Takashima, K. Yamaguchi
    Nagoya University, Nagoya, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
 
  Polarized electron beam is essential for future electron-positron colliders and electron-ion colliders. Recently we have developed the strain compensated superlattice (SL) photocathode. In the strain compensated SLs, the equivalent compressive and tensile strains introduced in the well and barrier SL layers so that strain relaxation is effectively suppressed with increasing the SL layer thickness and high crystal quality can be expected. In this study, we fabricated the GaAs/GaAsP strain compensated SLs with the thickness up to 90-pair SL layers. Up to now, the electron spin polarization of 92 % and the quantum efficiency of 1.6 % were simultaneously achieved from 24-pair sample. In this study, to compare the time response performances with the SL thicknesses, the measurements were carried out for conventional and strain compensated SL PCs. We show the measurement results and discuss the physics.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY040 Fabrication of Two Dimensional Nano-Scale Photocathode Arrays in Transparent Conductor for High Coherence Beam Generation 2645
SUPSS039   use link to see paper's listing under its alternate paper code  
 
  • T. Shibuya
    TIT, Tokyo, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • M. Yoshida
    KEK, Ibaraki, Japan
 
  Electron beam quality for particle source of diffractometer is mainly characterized by transverse and longitudinal coherent length, beam current density and so on. In order to improve a transverse coherent length, it is practically essential to minimize electrons emission area size as small as possible. However, the size of photoemission area is limited by focused laser beam size on the surface of cathode, and the scale is several microns. Aim to get definite overlap between the focused laser and emitters for effective irradiation, as well as to realize generation of nano-scale size electron beam, nano-scale photocathode arrays in transparent conductor are essential. Therefore, I propose to fabricate the nano-scale emission area in replace of limiting the focused laser size on the photocathode for achieving high coherence beam. The fabrication process of this novel nano-scale emitter configuration and its fundamental properties are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY041 Development of Mobile Neutron Sources Driven by X-Band Electron Linacs for Infrastructure Maintenance and Nuclear Security 2648
 
  • Y. Seki, J.M. Bereder, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
 
  We are developing a compact neutron source with a 3.95 MeV X-band (9.3 GHz) electron linac based X-ray source. The X-ray source, which included a tungsten target for bremsstrahlung, was originally fabricated for on-site nondestructive inspections for infrastructures such as bridges, expressways and tunnels. Attachment of a photo-neutron target to this X-ray source allows a new mobile neutron source. Main applications of this neutron source are on-site moisture detection in infrastructures, and nuclear materials measurement in fuel debris for decommissioning Fukushima nuclear power plants. Our approach also realizes a mobile X-ray/neutron hybrid source system in the future. The beryllium was employed as target material since it had especially small threshold energy for the photo neutron production. We have developed a 60-cm-cube target station by combining a beryllium block, a graphite reflector, a polyethylene moderator, a boric acid resin layer (neutron shied), and a lead layer (gamma-ray shield). This presentation will report a pilot experiment of neutron generation and discuss the results compared to a Monte Carlo simulation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY042 Effective Cycling and Ramping 2651
 
  • Ł. Żytniak, Ł.J. Dudek, P.P. Goryl, A. Kisiel, W.T. Kitka, A.I. Wawrzyniak
    Solaris, Kraków, Poland
  • P.J. Bell, V.H. Hardion, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
  • G. Gaio
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The National Synchrotron Radiation Centre Solaris, Kraków, Poland has been successfully built in collaboration with several institutes and organizations. The MAX IV Laboratory, Lund, Sweden and Elettra, Trieste, Italy, are the most important synchrotron partners. Solaris has built as an adaptation of MAX-IV 1.5 GeV ring and linear accelerator based on the same components as the ones of MAX-IV, therefore the device server for the magnet circuit has been developed by MAX-IV. Ramping was included in expert consultancy services contract won by Elettra. Solving problem with the power supplies stability and thanks to usage snapshots as steps for ramping it was possible to ramp the beam without losing current linearly.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY043 Parallel Particle Movement Simulation Algorithm Based on Heterogeneous Computing 2654
 
  • L.G. Zhang, L. Cao, K. Fan, J. Huang, K.F. Liu, W. Qi, J. Yang
    HUST, Wuhan, People's Republic of China
 
  Particle in cell (PIC) algorithm studies the self-consistent motion of multi-particle system by solving equations of particle dynamics, this algorithm is widely used to evaluate the nonlinear space charge effect of the high intensity or low energy beam. In order to reduce the random noise in the simulation, a huge number of particles should be traced, the process expends many computer hardware resources and a lot of computing time. Heterogeneous computing can greatly improve the efficiency of large quantities of the particle tracking by making full use of different types of computing resources. In this paper we give the algorithm which uses both CPU and GPU to trace the particles in electromagnetic field. The results show that the given algorithm increases the efficiency significantly.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)