Keyword: resonance
Paper Title Other Keywords Page
MOWZO02 LECR5 Development and Status Report ECR, ion-source, electron, MMI 6
 
  • C. Qian, J.R. An, J.J. Chang, X. Fang, Y.C. Feng, J.W. Guo, Z.H. Jia, L.B. Li, W. Lu, J.D. Ma, Y.M. Ma, L.T. Sun, H. Wang, X.Z. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • C. Qian
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  LECR5 (Lanzhou Electron Cyclotron Resonance ion source No. 5) is an 18 GHz room temperature ECR ion source featuring Ø80 mm ID (Internal Diameter) plasma chamber and high magnetic fields. It has been successfully constructed at IMP recently and has been fully commissioned to meet the requirements of SESRI (Space Environment Simulation and Research Infrastructure) project. According to the test results, LECR5 can meet the requirements of SESRI with sufficient beam intensities within the required the transverse emittances. As LECR5 is designed to be optimal for the operation at 18 GHz, we have managed to explore the source performance at 18 GHz with a maximum microwave power around 2 kW. Recent source test indicates, LECR5 can produce not only high intensity ion beams such as 2.12 emA O6+, 121 e’A of Ar14+, 73 e’A of Kr23+, 145 e’A of Xe27+, but also very high charge state ion beams such as 22 e’A of Bi41+. This paper will present the recent progress with LECR5, especially the intense ion beam production and the beam quality investigation.  
slides icon Slides MOWZO02 [5.886 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOWZO02  
About • Received ※ 27 September 2020 — Revised ※ 30 December 2020 — Accepted ※ 18 May 2021 — Issue date ※ 14 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOWZO03 Status of the AISHa Ion Source at INFN-LNS emittance, ion-source, brilliance, ECR 10
 
  • L. Celona, G. Calabrese, G. Castro, F. Chines, S. Gammino, O. Leonardi, G. Manno, D. Mascali, A. Massara, S. Passarello, D. Siliato, G. Torrisi
    INFN/LNS, Catania, Italy
  • G. Costanzo
    INFN-Pavia, Pavia, Italy
  • C. Maugeri, F. Russo
    CNAO Foundation, Pavia, Italy
 
  The AISHa ion source is an Electron Cyclotron Resonance Ion Source designed to generate high brightness multiply charged ion beams with high reliability, easy operations and maintenance for hadrontheraphy applications. The R&D performed by the INFN-LNS team during the 2019/2020 has allowed the improvement of the AISHa performances up to 20% for some of the extracted beams: both injection and extraction flanges has been improved and a movable electrode has been installed. The low energy beam transport has been equipped of an Emittance Measurement Unit (EMU), working through the beam wire scanners principle, for the measurement of the vertical and horizontal emittance of the beams of interest for hadrontherapy applications. Beam emittance has been characterized as a function of q/m and of the beam intensity to highlight space charge effects. If necessary, the beam wire scanners can be used for the characterization of the beam shape. The perspectives for further developments and plasma diagnostics will be also highlighted.  
slides icon Slides MOWZO03 [24.738 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOWZO03  
About • Received ※ 27 September 2020 — Revised ※ 12 November 2020 — Accepted ※ 06 February 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXZO01 A Proposed Explanation of High-Minimum-B Instabilities electron, ECR, ion-source, plasma 68
 
  • D.S. Todd, J.Y. Benitez
    LBNL, Berkeley, California, USA
 
  It is well-known that electron cyclotron resonance ion sources exhibit instabilities when these sources’ minimum magnetic fields are approximately 80% of the resonant field or greater, but the reasons for this instability have yet to be satisfactorily explained. We show that raising the minimum field makes much faster heating modes accessible at lower energies that invite the onset of kinetic instabilities.  
slides icon Slides TUXZO01 [3.566 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUXZO01  
About • Received ※ 28 September 2020 — Revised ※ 06 October 2020 — Accepted ※ 03 December 2020 — Issue date ※ 13 December 2020
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEWZO02 Precise Identification of Extracted Ion Beam Spectrum Initially Obtained in Synthesising Iron-Endohedral Fullerenes on ECRIS ECR, ion-source, experiment, ECRIS 114
 
  • I. Owada, S. Harisaki, Y. Kato, W. Kubo, T. Omori, K. Sato, K. Tsuda
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • A. Kitagawa, M. Muramatsu
    QST-NIRS, Chiba, Japan
  • Y. Yoshida
    Toyo University, Kawagoe-shi, Saitama, Japan
 
  Electron cyclotron resonance ion source (ECRIS) plasma has been constructed for producing synthesized ion beams in Osaka Univ.[1,2] We hope that it can become a universal source capable of producing ions with wide range mass/charge ration (m/q). We have been trying to produce endohedral fullerenes in the ECRIS. We have conducted initial experiments on production of them only in the second stage of ECRIS. We have been using iron vapor source by induction heating (IH) from the mirror end along to the geometrical axis, and C60 crucible from the side wall, respectively. We succeeded in realizing ECR plasma that fullerene and iron ions coexist on the single stage ECRIS, even by 1kV extraction voltage.[3] By these experimental series, the typical CSD suggests that there is possibility of slight formation of iron fullerenes compounds and iron endohedral fullerenes. We are continuing to investigate the experimental conditions that maximize spectrum corresponding to iron endohedral fullerenes. In this paper we describe preliminary experimental results of synthesizing iron-endohedral fullerene on the ECRIS.
*Y. Kato, et al., RSI, 2014, 85, 02A950-1-3.
**Y. Kato, et al., RSI, 2016, 87, 02A710-1-4.
***Y. Kato, et.al., IIT2018, IEEE Conf. Publ., 2019, pp.172-175.
 
slides icon Slides WEWZO02 [1.932 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEWZO02  
About • Received ※ 25 September 2020 — Revised ※ 14 October 2020 — Accepted ※ 03 November 2020 — Issue date ※ 12 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEWZO04 Producing Multicharged Ions by Pulse Modulated Microwaves at Mixing Low Z Gases on ECRIS experiment, ECR, plasma, cyclotron 122
 
  • S. Harisaki, Y. Kato, W. Kubo, I. Owada, K. Sato, K. Tsuda
    Osaka University, Graduate School of Engineering, Osaka, Japan
 
  We are aiming at producing various ion beams in ECRIS. In the case of producing multicharged ion beams, we try to enhance loss channel of low Z ions by means of adding pulse modulated microwaves to conventional gas mixing method.* Through these experiments, we explore the feasibility of selectively heating specific ions with pulse modulated microwaves and launching another low frequency RF waves. In gas mixing experiment, we use Helium as low Z gas for production of multicharged Ar and Xenon ion beams. These experiments are conducted by keeping the total pressure constant and changing the mixing ratio of Helium. The time scale of pulsed microwave is typically several to several hundreds of microseconds. We optimize the pulse period and duty ratio for producing multicharged ion beams. These effects are investigated to measure Charge State Distributions (CSDs). Also, we can measure the emittance using wire probe and multi slit attached to Ion Beam Irradiation System (IBIS). ** We estimate the normalized emittance from this measurement to determine index of ion temperature in the ECRIS. In this paper, we mainly describe the results of these active and additive methods at the ECRIS.
*M. Muramatsu, et al., Review of Scientific Instruments, 87, 02C110(2016).
**K. Okumura, et al., Review of Scientific Instruments, 91, 023311(2020).
 
slides icon Slides WEWZO04 [1.283 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEWZO04  
About • Received ※ 24 September 2020 — Revised ※ 27 September 2020 — Accepted ※ 03 December 2020 — Issue date ※ 15 July 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)