

LECR5 Development and Status Report

<u>C. Qian^{1,2}</u>, L. T. Sun^{1,2}, Z. H. Jia^{1,3}, W. Lu¹, L. B. Li^{1,2}, X. Fang¹, J. W. Guo¹, J. J. Chang¹, J. R. An¹, J. D. Ma¹, H. Wang¹, Y. M. Ma¹, Y. C. Feng¹, X. Z. Zhang¹, and H. W. Zhao^{1,2}

¹⁾Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ²⁾School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

³⁾School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

E-mail address: qianc@impcas.ac.cn

Design of LECR5

> Testing setup and Platform construction

Commissioning for Ion Beams

- Gaseous ion beams production
- Metal ion beams production

Design of LECR5

> Testing setup and Platform construction

Commissioning for Ion Beams

- Gaseous ion beams production
- Metal ion beams production

The requirement of the ECR ion source

lons	Current	lon energy	NRMS
H_2^+	≥250 euA		≤0.2
⁴ He ²⁺	≥200 euA	4 40)//0	
⁸⁴ Kr ¹⁸⁺	≥84 euA	4 Kev/u	≤0.15
²⁰⁹ Bi ³²⁺	≥50 euA		

Beam intensity produced by two types of typical ECRIS in IMP

lons	Charged State	LAPECR2 (eµA)	LECR3-14.5 GHz (eµA)	LECR4-18 GHz (eµA)
⁴⁰ Ar	8+	310	1100	1717
	9+	200	720	1075
	11+	105	325	503
²⁰⁹ Bi	28+	45	²⁰⁷ Pb ³⁰⁺ /18	118
	31+	20		70

- All permanent Magnet ECRIS and 14.5 GHz room temperature ECRIS can't meet the requirement of the bismuth ion beam.
- High performance 18 GHz room temperature ECRIS can meet all ion
- beam requirements.

Design parameters in comparison of other ECRIS

	LECR5	LECR4	SECRAL(18 GHz)
f (GHz)	18	18	18
B _{ini} (T)	≥2.5	2.4	2.5
B _{min} (T)	0.33~0.53	0.53	~0.5
B _{ext} (T)	≥1.2	1.3	1.4
B _{rad} (T)	≥1.2 (r=40)	~1.0 (r=38)	1.4 (r=63)
Mirror length	340 mm	307 mm	420 mm
Plasma Chamber	80 mm	76 mm	126 mm

The magnetic field configurations of the LECR5 are similar for those

of SECRAL operating at 18 GHz.

- Injection and radial magnetic field as high as possible.
- The minimum magnetic field in the middle can be adjusted.
- Plasma chamber as large as possible.

Outline

> Design of LECR5

> Testing setup and Platform construction

Commissioning for Ion Beams

- Gaseous ion beams production
- Metal ion beams production

Source Assembly of LECR5

Beam optical design of Testing Platform

HV=26.125 kV, I_0 = 5.0 emA, Bi³²⁺=65 euA, SSC=70%

Beam spots position

Beam spot size

X emittance Y

Y emittance

Data:01-18-2020

Testing conditions:

•Heating frequency: 14.5 +18 GHz

•Plasma chamber material: Stainless steel

•Plasma Electrode Aperture: Φ8 mm

•Screening Electrode Aperture: Φ16 mm

•FC Negative Biased Voltage: -150 V

 LECR5 has demonstrated its performance.

> Design of LECR5

> Testing setup and Platform construction

Commissioning for Ion Beams

- Gaseous ion beams production
- Metal ion beams production

Optimizing the production of highly charged krypton ion beams

Tuning Conditions:

- Heating frequency: Single 18 GHz
- Plasma chamber material: Stainless steel
- Plasma Electrode Aperture: $\Phi 8 \text{ mm}$

- Screening Electrode Aperture: Φ16 mm
- FC Negative Biased Voltage: -150 V

Optimizing the production of highly charged xenon ion beams

Tuning Conditions:

- Heating frequency: Single 18 GHz
- Plasma chamber material: Stainless steel
- Plasma Electrode Aperture: Φ8 mm

- Screening Electrode Aperture: Φ16 mm
- FC Negative Biased Voltage: -150 V

Gaseous ion beam results of LECR5 in comparison with other ECR ion sources

lons	Charged State	LECR5(eµA)	LECR4(eµA)	SECRAL(eµA)
		18 GHz<2 kW	18 GHz $<$ 2 kW	18 GHz $<$ 3.2 kW
¹⁶ O	6+	2120	2110	
	7+	458	560	
¹⁶ Ar	11+	521	620	
	12+	385	430	510
	14+	121	185	270
	16+	25	23	73
⁸⁶ Kr	18+	220		
	20+	120		
	23+	73		
	26+	32		
²⁰⁹ Xe	20+	338	430	505
	23+	263	275	
	26+	200	205	410
	27+	145	135	306
	28+	104	92	

LECR5 has the potential to produce intense highly charged ion beams.

Intense highly charged Ion beam Emittance

HV=28 kV, I_o=4.31 emA, ¹²⁹Xe²⁷⁺=145 eµA

Metal Ion Beams Production

Micro-Oven 2D Section

Micro-oven

Off-line test results

Tuning Conditions:

- Heating frequency: 14.5 +18 GHz
- Plasma chamber material: Aluminum
- Micro-oven port Aperture: Φ4 mm
- Plasma Electrode Aperture: Φ8 mm
- Screening Electrode Aperture: Φ16 mm
- FC Negative Biased Voltage: -150 V

Optimizing the production of highly charged bismuth ion beams

LECR5 can produce highly charged heavy ion beams.

Bismuth ion beam results of LECR5 in comparison with other ECR ion sources

lons	Charged State	LECR5(eµA) 14.5+18 GHz<2.2 kV	LECR4(eµA) V 18 GHz<2 kW	SECRAL(eμA) 18 GHz <3.2 kW
²⁰⁹ Bi	30+	119		191
	31+	101	92	150
	32+	81	63	
	< 41+	22>		22
	45+	12.5		15
	50+	3.8		1.5
X Crms βrms 8rms 8rms 8rms 8rms 8rms 8rms 8rms 8	2:0.07 (nrms =-2.31 = 0.63 m = 22 π.μm = 0.07 π.μm % = -1.90 % = 0.60 m % = 175 π.μm	19% in 010 π.μm 74% in 060 π.μm 97% in 120 π.μm 100% in 200 π.μm 100% in 200 π.μm 00% in 200 π.μm 100% in 200 π.μm 00% in 200 π.μm 00% in 200 m.μm 00% in 200	16% in 010 π. μm 66% in 060 π. μm 92% in 120 π. μm 92% in 120 π. μm 100% in 200 π. μm 100 π. μm cgY = 0.3 mm cgY = 7.9 mma Sum beamlets = 1 1317.09 m 21073.44 enA (extrapolation)	

Results of ion beams commissioning in comparison with requirements

lons	Intensity(eµA)	X (nrms)	Y (nrms)
H ₂ ⁺	266>250	0.14<0.2	0.15<0.2
⁴ He ²⁺	204>200	0.15 ≤ 0.15	0.14<0.15
⁸⁴ Kr ¹⁸⁺	88>84	0.09<0.15	0.11<0.15
²⁰⁹ Bi ³²⁺	51>50	0.05<0.15	0.05<0.15

- ➢02. 2016 − Project proposed, called LECR5-SESRI.
- ➢07. 2018 − Final Overall design finished.
- ➢07. 2019 − Overall assembly and first beam analyzed at IMP.
- ➢04. 2020 − LECR5-SESRI commissioning for intense highly

charged ion beams.

Next: Ready to transport to Harbin, Commissioning with RFQ.

> Design of LECR5

> Testing setup and Platform construction

Commissioning for ion beams

- Gaseous ion beams production
- Metal ion beams production

- 1. A high performance 18 GHz room temperature ECR ion source was successfully constructed.
- Some outstanding results of highly charged ion beams have been produced.
- 3. Excellent quality of intense heavy ion beam has been obtained.
- Better results will be obtained by further optimizing conditions:
 - 1. Multi-frequency heating.
 - 2. Higher microwave power up to 3 kW.

谢谢! Thanks for your attention!