

Producing Multicharged Ions by Pulse Modulated Microwaves at Mixing Low Z Gases on ECRIS

Shuhei Harisaki, Wataru Kubo, Issei Owada, Koichi Sato, Kazuki Tsuda, and Yushi Kato

Division of Electrical, Electronic and Inforcommunications Engineering, Graduate School of Engineering, Osaka Univ.

24th International Workshop on ECR Ion Sources

Introduction

Background

- In the previous study, we succeeded in increasing the multicharged ion yield of Xe in UHR heating experiment using 4-6GHz X-mode microwaves (※).
- We are now exploring the feasibility of selectively heating specific ions by launching a frequency band much lower than conventional ECR.
 ⇒e. g., ion cyclotron resonance (ICR), lower hybrid resonance (LHR)
- As a preliminary step, we try to enhance the ion cooling effect by heating low Z ions by pulsing microwaves under gas mixing.

Objective

- We conduct the experiment to generate ECR plasma with pulse-modulated microwaves under gas mixing.
- By changing the pulse period, the optimum period for extracting Xe⁷⁺ ion beams is investigated.

Experimental setup

Typical CSD's of gas mixing application

CW operation

Increased Xe⁷⁺ ion beam current by introducing Ar gas

The dependence of Xe^{q^+} on Ar mixing ratio \clubsuit

Typical CSD's of pulse application

Increased Xe⁷⁺ ion beam current by launching pulsed microwaves

The dependence of Xe⁷⁺ on pulse period

Comparison of the $n_{\rm e}$ **and the** $T_{\rm e}$

Conclusion

Summary

- We increased the beam current of Xe⁷⁺ by pulsed microwave launching under gas mixing.
- The T_e decreases when the pulsed microwave is applied, so the increase in the average charge state <q> is not due to it.
- The increase in Xe⁷⁺ seems to be due to the selective heating of ions, but another possibility is the effect of the afterglow (X).

Future plan

- We will estimate the ion temperature *T_i* and obtain confirmation of the cooling effect of the ions.
- ⇒Conducting emittance measurements
- We will conduct the experiments to generate ICR and LHR to selectively heat low Z ions.

⇒Injection of RF waves (typically 13.56MHz) into ECR plasma under gas mixing

(※)Y. Kato, et al., Rev. Sci. Instrum., 2000, **71**, 657