A theoretical model of high-B_{min} instabilites and experimental tests of its predictions

Damon S Todd and Janilee Y Benitez

Lawrence Berkeley National Laboratory

September 29, 2018

Outline

- Premise: Kinetic instabilities can be trouble for ECR ion sources
- Argument: Axial electron distribution is susceptible to these as B_{min} increases because of small axial magnetic field gradients (not the ones you are thinking of)
- Examples of the effects of these gradients

ECRIS tuning: avoid electron kinetic instabilities

What is kinetic instability? Kinetic energy (KE) distribution function increases with KE¹

What works against kinetic instability? Collisions. However, Spitzer² says $v_{ei} \propto KE_e^{-3/2}$ \rightarrow collisions rare above 10s of keV

¹ O. Tarvainen, Rev. Sci. Instrum. **87**, 02A703 (2016)

² L. Spitzer, *Physics of Fully Ionized Gases* (1962)

ECRIS 2020

ECRIS tuning: avoid electron kinetic instabilities

What is kinetic instability? Kinetic energy (KE) distribution function increases with KE¹

What works against kinetic instability? Collisions. However, Spitzer² says $v_{ei} \propto KE_e^{-3/2}$ \rightarrow collisions rare above 10s of keV

How they can happen in an ECRIS: If electrons' energies increase much faster than collisions smooth the distribution, plasma is susceptible to kinetic instabilities

¹ O. Tarvainen, Rev. Sci. Instrum. **87**, 02A703 (2016) ² L. Spitzer, *Physics of Fully Ionized Gases* (1962)

Two electron distributions: axial and halo

- Electrons' relatively low collision rates plus transverse heating leads to slow cross-field diffusion
- Additionally sextupole fields small near axis ($\propto r^2$)

Result \rightarrow very slow mixing between populations

Evidence:

- Simulation: Mironov et al^{*}
- Experiment: High charge state ions from axis

^{*}V. Mironov et al, Plasma Sources Science and Technology, Vol. 29, Num. 6 (2020)

Two electron distributions: axial and halo

- Electrons' relatively low collision rates plus transverse heating leads to slow cross-field diffusion
- Additionally sextupole fields small near axis ($\propto r^2$)

Result \rightarrow very slow mixing between populations

Evidence:

- Simulation: Mironov et al^{*}
- Experiment: High charge state ions from axis

I will only focus on axial electrons here

^{*}V. Mironov et al, Plasma Sources Science and Technology, Vol. 29, Num. 6 (2020)

3

Resonant heating: gradients matter(?)

Common sense and early simulations predict axial $\nabla \cdot \mathbf{B}$ should affect distribution

Bremsstrahlung experiment disagrees¹:

ECRIS 2020

→ spectral temperature depends on B_{min}

Resonant heating: gradients matter(?)

Common sense and early simulations predict axial $\nabla \cdot B$ should affect distribution

Bremsstrahlung experiment disagrees¹:

→ spectral temperature depends on B_{min}

Here we will argue that the axial gradient is very important...just not at the natural resonance field

ECRIS 2020

Last ingredient: Doppler shift

For axial RF:
$$~~rac{\mathrm{B}_{\mathrm{res}}}{\mathrm{B}_{\mathrm{res},\gamma=1}} = \gamma(1-\hat{k}_{wave}\cdotec{eta})$$

Last ingredient: Doppler shift

ECRIS 2020

What happens as we increase B_{min}?

Gradients decrease near resonance

More importantly, a region of zero-gradient becomes accessible to lower-energy electrons

Minimum KE for resonant heating at B_{min}

- For B_{min}/B_{res} ≈ 0.8 zero-gradient resonance can be reached by ~20 keV electrons
- True for all sources!

ECRIS 2020

Minimum KE for resonant heating at B_{min}

- For B_{min}/B_{res} ≈ 0.8 zero-gradient resonance can be reached by ~20 keV electrons
- True for all sources!

What are the ramifications?

ECRIS 2020

Resonant heating

3.0 resonance B: toward Simulation: resonance B: away VENUS (28 GHz) local B 2.5 -Single electron at magnetic field [T] a time E_{rf}=10 kV/m • 2.0 -1.5 -Calculate resonance fields 1.0 ${\rm B}_{\rm toward}$ and ${\rm B}_{\rm away}$ at each step 100 200 -200 -1000

z [mm]

ECRIS 2020

September 29, 2020 | Damon Todd 8

300

Resonant heating, zoomed

September 29, 2020 | Damon Todd 9

Resonant heating and energy change

- Energy changes when resonance field equals local field
- Changes in energy on crossing typically 10s to 100s of eV

Modes of heating: two crossings, away and toward

Modes of heating: two crossings, away and toward

- Two crossings on each side
 - One crossing with near-zero axial velocity so large ∆KE of keV possible
- Doesn't require high B_{min}

Modes of heating: one crossing, toward

ECRIS 2020

Modes of heating: one crossing, toward

- Axial velocity large enough for no away resonance
- Single-pass energy changes remain relatively small

Modes of heating: one crossing, away

Modes of heating: one crossing, away

- Axial velocity large enough for no toward resonance
- End-to-end energy changes larger (keV range)---near resonance most of the time
- Only possible for energies where B_{min} is accessible

14

Modes of heating: two crossings, away

Modes of heating: two crossings, away

- End-to-end energy changes larger (~keV) as there can be near resonances along entire
- Requires B_{min} be accessible

Modes of heating: two crossings with B_{min}

ECRIS 2020

Modes of heating: two crossings with B_{min}

- Includes B_{min} resonant heating, so requires accessible B_{min}
- Zero-gradient heating so large ∆KE possible

Modes of heating: no resonant heating

September 29, 2020 | Damon Todd 21

Modes of heating: no resonant heating

 Axial angle too large so resonance isn't reached

ECRIS 2020

September 29, 2020 | Damon Todd 22

Mapping the heating phase space

Mapping the heating phase space

 $B_{res} = B_{min}$ heating along green/black border

- Defines phase space area where resonant heating may occur
- True for all ECRIS

ECRIS 2020

v

θ

 v_z

 v_\perp

23

Heating phase space comparison

- B_{res} = B_{min} moves to higher energies
- Resonant heating phase space area increases

Transverse heating lines

Dashed lines are curves where all energy changes only alter transverse velocity

Transverse heating lines with electrons

ECRIS 2020

What happens when you add a second frequency?

Second frequency addition

Needs going forward

- Statistics:
 - what percentage of electrons find fast-heating modes?
 - energy distribution (not average!) vs. time
- Better microwave model (distribution and magnitude)
 - progress has been made elsewhere (Mironov, for example) showing higher fields outside resonance zones
 - question: are lower second frequencies (especially without a natural resonance such as VENUS 18GHz at B_{min}=0.8 T) less attenuated so lower power is needed to disturb fast, fundamental heating??

In Summary

- 1. A plasma distribution that gains kinetic energy faster than its distribution can be equilibrated via scattering will be more prone to kinetic instabilities
- 2. Resonantly heating near low magnetic field gradients means potentially greater changes in electron energy
- 3. Raising B_{min}/B_{res} to ~0.8 makes zero-gradient, axial heating accessible ~20 keV electrons...for all sources
- 4. The ability to access very-low-gradient regions allows for keV energy changes in a single end-to-end pass (up from 10s to 100s of eV)
- 5. Adding a second frequency acts provides a "scattering event" to disturb fast kinetic-energy-gain paths

Need statistics...

 Axial angle too large so resonance isn't reached

ECRIS 2020

Heating lines, Bmin lines

ECRIS 2020

Revolutions per mm at 1 tesla

Cyclotron revolutions per mm as a function of kinetic energy and angle

ECRIS 2020

The notch

ECRIS 2020

Distribution function troubles

ECRIS 2020