Keyword: cyclotron
Paper Title Other Keywords Page
MOYZO03 The Relationship Between the Diffusion of Hot Electrons, Plasma Stability, and ECR Ion Source Performance plasma, ECR, electron, ion-source 38
 
  • B.C. Isherwood
    MSU, East Lansing, Michigan, USA
  • G. Machicoane
    NSCL, East Lansing, Michigan, USA
  • G. Machicoane
    FRIB, East Lansing, Michigan, USA
 
  Funding: This research was made possible by the National Science Foundation under NSF Grant 1632761 and the U.S. Department of Energy Award Number DE-SC0018362.
Plasma instabilities complicate the operation of electron cyclotron resonance ion sources. In particular, quasi-periodic losses of electrons from confinement due to kinetic cyclotron instabilities hinder ion source performance. Empirical scaling laws help guide the development of sources away from the most unstable operating points but are poorly understood. Further advancement of ECR ion source technologies requires a deeper understanding of instabilities, scaling laws, and internal processes of the ion source plasma itself. We present here results of an experimental study into these instabilities and scaling laws, and measurements of hot electron diffusion (E > 10 keV) from the 18 GHz SUSI ECRIS at the NSCL. Measurements of the average argon current and the standard deviation of their variations across multiple unstable operating points are shown. These measurements are compared to measurements of electrons that diffuse axially from the plasma chamber. In doing so it will be shown how controlling the diffusion of electrons control the stability of the plasma and optimize the ion source’s performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOYZO03  
About • Received ※ 30 September 2020 — Revised ※ 20 October 2020 — Accepted ※ 19 January 2021 — Issue date ※ 11 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZO01 Production of 48Ca and 48Ti Ion Beams at the DC-280 Cyclotron ECR, ion-source, ECRIS, factory 43
 
  • S.L. Bogomolov, A.E. Bondarchenko, A.A. Efremov, K.I. Kuzmenkov, N. Lebedev, V.N. Loginov, V. Mironov, D.K. Pugachev
    JINR, Dubna, Moscow Region, Russia
 
  The heaviest known elements (up to 118Og) were synthesized at the U-400 cyclotron (FLNR JINR, Dubna) by using a beam of 48Ca ions. During the tests of the DC-280 cyclotron, intense beams of 48Ca ions were produced. For the synthesis of the elements 119 and heavier, intense and stable beams of medium-mass elements are required, such as 50Ti and 54Cr. Before starting the main experiments, we test the production of 48Ti ion beam, which is less expensive than 50Ti. The article describes the method, technique, and experimental results on the production of 48Ca and 48Ti ion beam at the DC-280 cyclotron from the DECRIS-PM ion source.  
slides icon Slides MOZZO01 [1.105 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOZZO01  
About • Received ※ 24 September 2020 — Revised ※ 28 September 2020 — Accepted ※ 20 May 2021 — Issue date ※ 21 July 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZO06 Microcontrollers as Gate and Delay Generators for Time Resolved Measurements plasma, electron, ECR, ion-source 57
 
  • B.C. Isherwood
    MSU, East Lansing, Michigan, USA
  • G. Machicoane
    FRIB, East Lansing, Michigan, USA
 
  Funding: This research was made possible by the National Science Foundation under NSF Grant 1632761 and the U.S. Department of Energy Award Number DE-SC0018362.
The diffusion of electrons from ECRIS plasmas results in the emission of bremsstrahlung distributions from the plasma chamber. ECRIS bremsstrahlung measurements that are both time- and energy-resolved are often challenging to perform due to the 10’s; 100’s ms timescale that the plasma evolves over. However, the advancement of low-cost microcontrollers over the last decade makes timing and gating photon spectrometers easier. We present a proof of principle measurement which uses an Arduino microcontroller as a gate-and-delay generator for a High Purity Germanium (HPGe) detector. An example plot of the time-resolved bremsstrahlung spectrum, triggered by beam current variation induced by kinetic instabilities, is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOZZO06  
About • Received ※ 30 September 2020 — Revised ※ 21 October 2020 — Accepted ※ 19 January 2021 — Issue date ※ 23 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYZO01 Advancements in Self-Consistent Modeling of Time- and Space-Dependent Phenomena in ECRIS Plasma plasma, electron, ECR, ECRIS 78
 
  • A. Pidatella, D. Mascali, B. Mishra, E. Naselli, G. Torrisi
    INFN/LNS, Catania, Italy
  • A. Galatà
    INFN/LNL, Legnaro (PD), Italy
  • E. Naselli
    Catania University, Catania, Italy
 
  Resonant interaction with microwave radiation in ECRIS plasma leads to a strongly anisotropic electron energy distribution function (EEDF), given as a combination of two to three electron populations, with anisotropy that might trigger kinetic instabilities. At the INFN, further efforts have been paid to improve and update self-consistent 3D numerical codes for plasma electrons kinetics. Progresses have opened several perspectives. It is now possible to derive a space-resolved EEDF, providing local information on electron properties. Also, the code has been updated to provide reaction rates of electromagnetic emissions, including X-ray fluorescence. Estimates of the local ion charge state distribution is potentially possible, and first evaluations are ongoing. Dealing with fast-transient mechanisms, such as electromagnetic emission via the electron-cyclotron MASER instability, the code is now updated for locally evaluating the EEDF anisotropy. We will present the collected results, which we believe to have a relevant impact both on the ECRIS plasma physics and on the INFN’s PANDORA project that plans to use ECR plasmas for fundamental studies in Nuclear and AstroNuclear Physics.  
slides icon Slides TUYZO01 [25.158 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUYZO01  
About • Received ※ 28 September 2020 — Revised ※ 03 October 2020 — Accepted ※ 21 November 2020 — Issue date ※ 01 December 2020
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEWZO04 Producing Multicharged Ions by Pulse Modulated Microwaves at Mixing Low Z Gases on ECRIS experiment, ECR, resonance, plasma 122
 
  • S. Harisaki, Y. Kato, W. Kubo, I. Owada, K. Sato, K. Tsuda
    Osaka University, Graduate School of Engineering, Osaka, Japan
 
  We are aiming at producing various ion beams in ECRIS. In the case of producing multicharged ion beams, we try to enhance loss channel of low Z ions by means of adding pulse modulated microwaves to conventional gas mixing method.* Through these experiments, we explore the feasibility of selectively heating specific ions with pulse modulated microwaves and launching another low frequency RF waves. In gas mixing experiment, we use Helium as low Z gas for production of multicharged Ar and Xenon ion beams. These experiments are conducted by keeping the total pressure constant and changing the mixing ratio of Helium. The time scale of pulsed microwave is typically several to several hundreds of microseconds. We optimize the pulse period and duty ratio for producing multicharged ion beams. These effects are investigated to measure Charge State Distributions (CSDs). Also, we can measure the emittance using wire probe and multi slit attached to Ion Beam Irradiation System (IBIS). ** We estimate the normalized emittance from this measurement to determine index of ion temperature in the ECRIS. In this paper, we mainly describe the results of these active and additive methods at the ECRIS.
*M. Muramatsu, et al., Review of Scientific Instruments, 87, 02C110(2016).
**K. Okumura, et al., Review of Scientific Instruments, 91, 023311(2020).
 
slides icon Slides WEWZO04 [1.283 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEWZO04  
About • Received ※ 24 September 2020 — Revised ※ 27 September 2020 — Accepted ※ 03 December 2020 — Issue date ※ 15 July 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXZO05 Production of Metal Ion Beams From ECR Ion Sources ECR, ion-source, injection, operation 137
 
  • A.E. Bondarchenko, S.L. Bogomolov, N. Lebedev, V.N. Loginov, V. Mironov, D.K. Pugachev
    JINR, Dubna, Moscow Region, Russia
  • M.B. Abdigaliyev, I.A. Ivanov, M.V. Koloberdin, A.E. Kurakhmedov, D.A. Mustafin, Y.K. Sambayev, M.V. Zdorovets
    INP NNC RK, Almaty, Kazakhstan
 
  The work describes the preparation of metal ion beams from ECR ion sources by the MIVOC (Metal Ions from Volatile Compounds) method. The method is based on the use of volatile metal compounds having high vapor pressure at room temperature: for example, Ni(C5H5)2, (CH3)5C5Ti(CH3)3 and several others. Using this method, intense beams of chromium, titanium, iron, and other ions were obtained at the U-400 FLNR JINR and DC-60 cyclotrons (Astana branch of the INP, Alma-Ata, Kazakhstan Republic).  
slides icon Slides WEXZO05 [3.129 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEXZO05  
About • Received ※ 24 September 2020 — Revised ※ 28 September 2020 — Accepted ※ 03 December 2020 — Issue date ※ 19 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZZO10 Electron Cyclotron Emission Imaging of Electron Cyclotron Resonance Ion Source Plasmas plasma, electron, ECR, ECRIS 164
 
  • L.E. Henderson, H.L. Clark, C.A. Gagliardi
    Texas A&M University, Cyclotron Institute, College Station, Texas, USA
  • D.P. May
    Texas A&M University Cyclotron Institute, College Station, Texas, USA
 
  A new imaging system for Electron Cyclotron Resonance Ion Sources (ECRIS) has been designed and is being built. This K- and Ka-band camera will extract localized measurements of absolute energy and relative number density for ECRIS plasma electrons by imaging their Electron Cyclotron Emission (ECE) spectra, as the frequency, shape, and strength of the ECE harmonics correlate directly with the local magnetic field, electron energy, and plasma density. The design of the overall quasi-optical system will be presented, including novel ceramic optics for the radial viewports of the Cyclotron Institute’s ECRIS and metamaterial mirrors with electronically controllable reflectivity. Spatial resolution sufficient to distinguish important plasma regions and temporal resolution sufficient to study dynamic plasma processes is expected.  
slides icon Slides WEZZO10 [10.583 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEZZO10  
About • Received ※ 28 September 2020 — Revised ※ 07 October 2020 — Accepted ※ 15 October 2020 — Issue date ※ 16 November 2020
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)