Keyword: injection
Paper Title Other Keywords Page
MOZZO04 New Metallic Stable Ion Beams for GANIL ECR, ion-source, plasma, experiment 54
 
  • F. Lemagnen, C. Barue, M. Dubois, R. Frigot, N. Lechartier, V. Metayer, B. Osmond
    GANIL, Caen, France
 
  GANIL has been producing many stable beams for nearly 40 years. Constant progress has been made in terms of intensity, stability and reliability. The intensity for some stable metallic beams now exceeds or approaches the pµA level at an energy up to 95 MeV/u: 1.14 pµA for 36S (65% enriched) at 77 MeV/u, 0.35 pµA for 58Ni (63%) at 74 MeV/u. The presentation highlights recent results obtained for 28Si, 184W and 130Te using the GANIL ‘s LCO (Large Capacity Oven) on the ECR4 ion source. To produce the tungsten beam, two injection methods were compared. For the first one, we evaporated some tungsten trioxide (WO3) with GANIL ‘s LCO. For the second one, the injection in the plasma chamber was made by using MIVOC (Metallic Ions from VOlatile compounds) with a tungsten hexacarbonyl (W(CO)6) compound. It was the first time that we used metal carbonyl compounds and the result is promising. All the tests have been qualified to obtain the level of intensity and beam stability. Theses good results led us to propose them for Physics experiments.  
slides icon Slides MOZZO04 [4.743 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOZZO04  
About • Received ※ 25 September 2020 — Revised ※ 16 December 2020 — Accepted ※ 21 January 2021 — Issue date ※ 18 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYZO03 Electromagnetic Simulation of "plasma-shaped" Plasma Chamber for Innovative ECRIS cavity, plasma, GUI, ECR 90
 
  • G.S. Mauro, O. Leonardi, D. Mascali, A. Pidatella, F. Russo, G. Sorbello, G. Torrisi
    INFN/LNS, Catania, Italy
  • A. Galatà, C.S. Gallo
    INFN/LNL, Legnaro (PD), Italy
  • C.S. Gallo
    UNIFE, Ferrara, Italy
  • G. Sorbello
    University of Catania, Catania, Italy
 
  The plasma chamber and injection system design play a fundamental role in ECRISs with the aim to obtain an optimized electromagnetic field configuration able to generate and sustain a plasma with a high energy content. In this work we present the numerical study and the design of an unconventionally-shaped cavity resonator* that possesses some key advantages with respect to the standard cylindrical cavities, usually adopted in ion sources setups. The cavity geometry, whose design has been completed on January 2020, has been inspired by the typical star-shaped ECR plasma, determined by the magnetic field structure. The chamber has been designed by using the commercial softwares CST and COMSOL, with the aim to maximize the on-axis electric field. Moreover, a radically innovative microwaves injection system, consisting in side-coupled slotted waveguides, has been implemented, allowing a better power coupling and a more symmetric power distribution inside the cavity with respect to the standard rectangular waveguides. This new ’plasma-shaped oriented’ design could relevantly improve the performances of the ECRISs while making more compact the overall setup.
*This work has been carried out within the Grant 73/IRIS project, supported by INFN (Italian patent pending n. 102020000001756).
 
slides icon Slides TUYZO03 [5.119 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUYZO03  
About • Received ※ 28 September 2020 — Revised ※ 05 October 2020 — Accepted ※ 18 May 2021 — Issue date ※ 10 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXZO05 Production of Metal Ion Beams From ECR Ion Sources cyclotron, ECR, ion-source, operation 137
 
  • A.E. Bondarchenko, S.L. Bogomolov, N. Lebedev, V.N. Loginov, V. Mironov, D.K. Pugachev
    JINR, Dubna, Moscow Region, Russia
  • M.B. Abdigaliyev, I.A. Ivanov, M.V. Koloberdin, A.E. Kurakhmedov, D.A. Mustafin, Y.K. Sambayev, M.V. Zdorovets
    INP NNC RK, Almaty, Kazakhstan
 
  The work describes the preparation of metal ion beams from ECR ion sources by the MIVOC (Metal Ions from Volatile Compounds) method. The method is based on the use of volatile metal compounds having high vapor pressure at room temperature: for example, Ni(C5H5)2, (CH3)5C5Ti(CH3)3 and several others. Using this method, intense beams of chromium, titanium, iron, and other ions were obtained at the U-400 FLNR JINR and DC-60 cyclotrons (Astana branch of the INP, Alma-Ata, Kazakhstan Republic).  
slides icon Slides WEXZO05 [3.129 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEXZO05  
About • Received ※ 24 September 2020 — Revised ※ 28 September 2020 — Accepted ※ 03 December 2020 — Issue date ※ 19 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZZO02 Contaminants Reduction in ECR Charge Breeders by LNL LPSC GANIL Collaboration plasma, vacuum, ECR, extraction 151
 
  • J. Angot, M.A. Baylac, M. Migliore, P. Sole, T. Thuillier
    LPSC, Grenoble Cedex, France
  • A. Galatà
    INFN/LNL, Legnaro (PD), Italy
  • L. Maunoury
    GANIL, Caen, France
 
  Contaminants reduction in Electron Cyclotron Resonance Charge Breeders (ECRCB) is a key point for the future experiments foreseen at LNL and GANIL Isotope Separation On Line (ISOL) facilities. According to the mass separator resolution set downstream the ECRCB, the radioactive ion beam study can be challenged in case of low production rate. An ongoing collaboration between LNL, LPSC and GANIL laboratories aims to improve the beam purity, acting on all the pollutant causes. Comparative experiments will be done at LPSC using different techniques, like covering the plasma chamber wall with liners of different materials. Different configurations of the ECRCB will also be tested, with the enhancement of the efficiency and charge breeding time parameters as additional objectives. A presentation of this program is proposed together with the recent upgrade of the LPSC 1+N+ test bench, with the aim to improve the vacuum quality.  
slides icon Slides WEZZO02 [1.915 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEZZO02  
About • Received ※ 29 September 2020 — Revised ※ 01 October 2020 — Accepted ※ 15 October 2020 — Issue date ※ 04 November 2020
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
NACB01 Development of a Compact Linear ZAO NEG Pumping System vacuum, operation, cathode, detector 167
 
  • S.A. Kondrashev, E.N. Beebe, B.D. Coe, J. Ritter, T. Rodowicz, R. Schoepfer, S.M. Trabocchi
    BNL, Upton, New York, USA
 
  Funding: This work was supported by the US Department of Energy under contract number DE-SC0012704 and by the National Aeronautics and Space Administration.
An upgrade of RHIC EBIS, the extended EBIS, is presently under development at Brookhaven National Laboratory to increase the intensity of the Au32+ ion beams by 40%’50% to 2.1 ’ 109 Au32+ ions/pulse at the booster ring entrance. Generation of intense beams of polarized 3He2+ ions with up to ~ 5 ’ 1011 ions/pulse for the RHIC and the future electron’ion collider is a goal of the EBIS upgrade project as well. Ultra-high vacuum is extremely important for stable and reliable operation of EBIS/T devices. We have developed a linear pumping module based on the ZAO NEG unit commercially available from SAES Getters. This pumping system will be used for the Extended EBIS Upgrade which is presently under development at BNL. A ZAO NEG module has been modified to be heated up to 600 °C by passing up to 120 A of DC current through a stainless-steel cage for required NEG activation and reactivation temperature cycles. A method of pumping speed measurements using pulsed gas injection into the vacuum chamber has been developed and used for characterization of the ZAO NEG-based linear pumping system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-NACB01  
About • Received ※ 29 September 2020 — Revised ※ 30 September 2020 — Accepted ※ 21 October 2020 — Issue date ※ 16 April 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
NACB04 Ion Simulations, Recent Upgrades and Tests with Titan’s Cooler Penning Trap electron, plasma, simulation, extraction 181
 
  • R. Silwal, J. Dilling, B.A. Kootte, A.A. Kwiatkowski, S.F. Paul
    TRIUMF, Vancouver, Canada
  • J. Dilling
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • G. Gwinner, B.A. Kootte
    University of Manitoba, Manitoba, Canada
  • R. Simpson
    UW/Physics, Waterloo, Ontario, Canada
 
  TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN) facility has the only on-line mass measurement Penning trap (MPET) at a radioactive beam facility that uses an electron beam ion trap (EBIT) to enhance mass precision and resolution. EBITs can charge breed exotic isotopes, making them highly charged, thereby improving the precision of atomic mass measurement as the precision scales linearly with the charge state. However, ion bunches charge bred in the EBIT can have larger energy spread, which poses challenges for mass measurements. A cooler Penning trap (CPET) is currently being developed off-line at TITAN to sympathetically cool the highly charged ions (HCI) with a co-trapped electron plasma, prior to their transport to the MPET. To evaluate the integration of the CPET into the TITAN beamline and to optimize the beam transport, ion trajectory simulations were performed. Hardware upgrades motivated by these simulations and previous test measurements were applied to the off-line CPET setup. Ions and electrons were co-trapped for the first time with the CPET. Progress and challenges on the path towards HCI cooling and integration with the on-line beam facility are presented  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-NACB04  
About • Received ※ 17 October 2020 — Revised ※ 23 October 2020 — Accepted ※ 01 December 2020 — Issue date ※ 07 February 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)