Paper | Title | Page |
---|---|---|
MOBA06 | N Doping: Progress in Development and Understanding | 48 |
|
||
Significant progress was made recently with N2 doped cavities. This talk will summarize all developments with N-doped Nb cavity work at FNAL in the past two years. | ||
![]() |
Slides MOBA06 [7.704 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB014 | Magnetic Flux Expulsion in Horizontally Cooled Cavities | 110 |
|
||
Funding: Work supported by the US Department of Energy, Office of High Energy Physics The cool down details of superconducting accelerating cavities are crucial parameters that have to be optimize in order to obtain very high quality factors. The temperature all around the cavity is monitored during its cool down across the critical temperature, in order to visualize the different dynamics of fast and slow cool-down, which determine considerable difference in terms of magnetic field expulsion and cavity performance. The study is performed placing a single cell 1.3 GHz elliptical cavity perpendicularly to the helium cooling flow, which is representative of how SRF cavities are cooled in an accelerator. Hence, the study involves geometrical considerations regarding the cavity horizontal configuration, underling the different impact of the various magnetic field components on the surface resistance. Experimental data also proves that under established conditions, flux lines are concentrated at the cavity top, in the equatorial region, leading to temperature rise. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB015 | Trapped Flux Surface Resistance Analysis for Different Surface Treatments | 115 |
|
||
Funding: Work supported by the US Department of Energy, Office of High Energy Physics The trapped flux surface resistance is one of the main contributions on cavity losses which appears when cavities are cooled in presence of external magnetic field. The study is focused on the understanding of the different parameters which determine the trapped flux surface resistance, and how this change as a function of different surface treatments. The study is performed on 1.3 GHz niobium cavities processed with different surface treatments after the 800 C bake: electro-polishing (EP), 120 C baking, and N-doping varying the time of the Nitrogen exposure. The trapped flux surface resistance normalized for the trapped magnetic flux is then analyzed as a function of the mean free path in order to find the surface treatment which minimized the trapped flux sensitivity. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB019 | Horizontal Testing and Thermal Cycling of an N-Doped Tesla Type Cavity | 125 |
|
||
An N-doped TESLA type cavity treated at FERMILAB has been tested in the HoBiCaT horizontal test stand. Temperatures and magnetic fields occuring during the superconducting transition were recorded at various positions and directions on the outer cavity surface. Several thermal cycling runs were performed yielding different Q0 factors just like in undoped cavities. The resulting residual and BCS resistance values were correlated to the thermal and magnetic conditions during cooldown. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB020 | Mean Free Path Dependence of the Trapped Flux Surface Resistance | 129 |
|
||
Funding: Work supported by the US Department of Energy, Office of High Energy Physics In this article a calculation of the trapped flux surface resistance is presented. The two main mechanisms considered in such approach are the oscillation of the magnetic flux trapped in the superconductor due to the Lorentz force, and the static resistance associated to the normal conducting vortex core. The model derived shows a good description of the available experimental data, highlighting that the radio frequency vortex dissipation is mostly due to the static part of the surface resistance. We show that the surface resistance for 100% trapped flux normalized to the trapped field (expressed in nOhm/mG) can be approximated to R/B=18.3*(l f)1/2/(50.1+l) with l the mean free path in nm and f the frequency in GHz. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB027 | Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping of Ultra-High Quality Factor Cavities | 144 |
|
||
We have performed detailed studies using DC and AC magnetometry and electrical resistivity measurements of niobium samples prepared using different nitrogen doping recipes. We compare the results to the samples prepared by standard preparation techniques such as EP with and without additional 120C baking to get insight into driving factors of the lowered quench field in N-doped SRF cavities. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB028 | Preservation of Very High Quality Factors of 1.3 GHz Nine Cell Cavities From Bare Vertical Test to Dressed Horizontal Test | 149 |
|
||
In this contribution we will report quality factor evolution of several different nine cell N doped cavities with very high Q. The evolution of the quality factor will be reported from bare to dressed in vertical test to dressed in horizontal test with unity coupling to dressed in horizontal test and CM-like environment/configuration (with RF ancillaries). Cooling studies and optimal cooling regimes will be discussed for both vertical and horizontal tests and comparisons will be drawn also for different styles titanium vessels. Studies of sensitivities to magnetic field in final horizontal configuration have been performed by applying a field around the dressed cavity and varying the cooling; parameters required for a very good flux expulsion will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB033 | LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration | 159 |
|
||
Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515. The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB041 | Cryomodule Testing of Nitrogen-Doped Cavities | 182 |
|
||
Funding: DOE and the LCLS-II High Q Project The Linac Coherent Light Source-II (LCLS-II) is a new FEL x-ray source that is planned to be constructed in the existing SLAC tunnel. In order to meet the required high Q0 specification of 2.7x1010 at 2 K and 16 MV/m, nitrogen-doping has been proposed as a preparation method for the SRF cavities in the linac. In order to test the feasibility of these goals, four nitrogen-doped cavities have been tested at Cornell in the Horizontal Test Cryomodule (HTC) in five separate tests. The first three tests consisted of cavities assembled in the HTC with high Q input coupler. The fourth test used the same cavity as the third but with the prototype high power LCLS-II coupler installed. Finally, the fifth test used a high power LCLS-II coupler, cavity tuner, and HOM antennas. Here we report on the results from these tests along with a systematic analysis of change in performance due to the various steps in preparing and assembling LCLS-II cavities for cryomodule operation. These results represent one of the final steps to demonstrate readiness for full prototype cryomodule assembly for LCLS-II. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB055 | Characterization of Nitrogen Doping Recipes for the Nb SRF Cavities | 223 |
|
||
For the future development of the nitrogen doping technology, it’s vital to understand the mechanisms behind the performance benefits of N-doped cavities as well as the performance limitations, such as quench field. Following various doping recipes, cavity cutouts and flat niobium samples have been evaluated with XRD, SEM, SIMS and TEM in order to relate structural and compositional changes in the niobium near-surface to SRF performance. Annealing of Nb cavities with nitrogen for various durations and at various temperatures lead to a layer containing inclusions of non-superconducting Nb nitride phases, followed by unreacted Nb with an elevated N-interstitials concentration. We found that EP of the N-treated cavities removes the unwanted niobium nitride phases, confirming that performance benefits are originating from the elevated concentration of N interstitials. The role of low temperature Nb hydride precipitants in the performance limitation of N-doped cavities was evaluated by TEM temperature dependent studies. Finally, extended characterization of the original cavity cutouts from the N-doped RF tested cavity sheds some light on quenching mechanisms. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB087 | Integrated High-Power Tests of Dressed N-doped 1.3 GHz SRF Cavities for LCLS-II | 342 |
|
||
New auxiliary components have been designed and fabricated for the 1.3 GHz SRF cavities comprising the LCLS-II linac. In particular, the LCLS-II cavity’s helium vessel, high-power input coupler, higher-order mode (HOM) feedthroughs, magnetic shielding, and cavity tuning system were all designed to meet LCLS-II specifications. Integrated tests of the cavity and these components were done at Fermilab’s Horizontal Test Stand (HTS) using several kilowatts of continuous-wave (CW) RF power. The results of the tests are summarized here. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB104 | Flux Expulsion Variation in SRF Cavities | 404 |
|
||
Treating a cavity with nitrogen doping significantly increases Q0 at medium fields, reducing cryogenic costs for high duty factor linear accelerators such as LCLS II. N-doping also makes cavities more sensitive to increased residual resistance due to trapped magnetic flux, making it critical to either have extremely effective magnetic shielding, or to prevent flux from being trapped in the cavity during cooldown. In this paper, we report on results of a study of flux expulsion. We discuss possible ways in which flux can be pinned in the inner surface, outer surface, or bulk of a cavity, and we present experimental results studying these mechanisms. We show that grain structure appears to play a key role and that a cavity that expelled flux poorly changed to expelling flux well after a high temperature furnace treatment. We further show that after furnace treatment, this cavity exhibited a significant improvement in quality factor when cooled in an external magnetic field. We conclude with implications for SRF accelerators with high Q0 requirements. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB111 | Furnace N2 Doping Treatments at Fermilab | 423 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The Fermilab SRF group regularly performs Nitrogen (N2) doping heat treatments on superconducting cavities in order to improve their Radio Frequency (RF) performances. This paper describes the set up and operations of the Fermilab vacuum furnaces, with a major focus on the implementation and execution of the N2 doping recipe. The cavity preparation will be presented, N2 doping recipes will be analyzed and heat treatment data will be reported in the form of plot showing temperature, total pressure and partial pressures over time. Finally possible upgrades and improvements of the furnace and the N2 doping process are discussed. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB004 | Vertical Cavity Test Facility at Fermilab | 534 |
|
||
After a recent upgrade, the vertical test facility for SRF cavities at Fermilab features a low level RF system capable of testing 325MHz, 650MHz, 1.3GHz, and 3.9GHz cavities, helium liquefying plant, three test cryostats, and the interlock safety system. The cryostats can accommodate measurements of multiple cavities in a given cryogenic cycle in the range of temperatures from 4.2K to 1.4K. We present a description of the components of the vertical test facility. We also discuss cavity instrumentation that is used for diagnostics of cavity ambient conditions and quench characterization. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB073 | Cold Tests of SSR1 Resonators Manufactured by IUAC for the Fermilab PIP-II Project | 750 |
|
||
In the framework of the Indian Institutions and Fermilab Collaboration (IIFC) within the PIP-II project, two Superconducting Single Spoke Resonators were manufactured at the Inter-University Accelerator Centre (IUAC) in New Delhi and tested at Fermilab. The resonators were subject to the routine series of inspections and later processed chemically by means of Buffered Chemical Polishing, heat-treated at 600 C and cold-tested at Fermilab in the Vertical Test Stand. In this paper we present the findings of the inspections and the results of the cold-tests. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB099 | Magnetic Foils for SRF Cryomodule | 844 |
|
||
Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359 High quality factor niobium cavities require minimal residual magnetic field around the high magnetic field region. A typical global magnetic shield takes more material and provides less effective magnetic screening. On the other hand, local magnetic shield has to introduce complex geometries to cover access ports and instrumentation and thermal straps. Local magnetic source and thermal current will increase residual field seen by SRF cavities regardless the complexity of local magnetic shield. Magnetic foils that is cryogenic compatible provides a great benefit to reduce residual magnetic field. This paper will describe the evaluation of such magnetic foils in both vertical and horizontal test. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB089 | HOM Coupler Performance in CW Regime in Horizontal and Vertical Tests | 1349 |
|
||
Power dissipation in HOM coupler antenna can limit cavity gradient in cw operation. XFEL design of HOM coupler, feedthrough and thermal connection to 2K pipe was accepted for LCLS-II cavity based on simulation results. Recently a series of vertical and horizontal tests was done to prove design for cw operation. In vertical test was found no effect of HOM coupler heating on high-Q cavity performance. In horizontal cryostat HOM coupler was tested up-to 23MV/m in continuous wave mode. Result proves that XFEL HOM coupler meets LCLS-II specifications. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRBA03 | SRF, Compact Accelerators for Industry & Society | 1467 |
|
||
Accelerators developed for Science now are used broadly for industrial, medical, and security applications. Over 30,000 accelerators touch over $500B/yr in products producing a major impact on our economy, health, and well being. Industrial accelerators must be cost effective, simple, versatile, efficient, and robust. Many industrial applications require high average beam power. Exploiting recent advances in Superconducting Radio Frequency (SRF) cavities and RF power sources as well as innovative solutions for the SRF gun and cathode system, a collaboration of Fermilab-CSU-NIU has developed a design for a compact SRF high-average power electron linac. Capable of 5-50 kW average power and continuous wave operation this accelerator will produce electron beam energies up to 10 MeV and small and light enough to mount on mobile platforms, such accelerators will enable new in-situ environmental remediation methods and new applications involving in-situ crosslinking of materials. More importantly, we believe this accelerator will be the first of a new class of simple, turn-key SRF accelerators that will find broad application in industry, medicine, security, and science. | ||
![]() |
Slides FRBA03 [2.342 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |