Author: Pischalnikov, Y.M.
Paper Title Page
MOZGBD3 Performance of the First LCLS-II Cryomodules: Issues and Solutions 34
 
  • N. Solyak, E. Cullerton, J. Einstein-Curtis, E.R. Harms, B.D. Hartsell, J.P. Holzbauer, T.N. Khabiboulline, A. Lunin, Y.M. Pischalnikov, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • O. Napoly
    CEA/DSM/IRFU, France
 
  LCLS-II 4 GeV linac is on the middle production stage. Linac contains 40 cryomodules of 1.3 GHz and 3 cryomodules of 3.9 GHz, including spares. Fermilab and JLAB share responsibility for cryomodule design, assembly and test. Paper will overview the performance of the cryomodules it the tests, lessons learned and modifications in design to improve performance.  
slides icon Slides MOZGBD3 [8.630 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML001 Passive Microphonics Mitigation during LCLS-II Cryomodule Testing at Fermilab 2668
 
  • J.P. Holzbauer, B.E. Chase, J. Einstein-Curtis, B.J. Hansen, E.R. Harms, J.A. Kaluzny, A.L. Klebaner, M.W. McGee, Y.O. Orlov, T.J. Peterson, Y.M. Pischalnikov, W. Schappert, R.P. Stanek, J. Theilacker, M.J. White, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The LCLS-II project calls for cryomodule production and testing at both Fermilab and JLab. Due to low beam loading and high cavity quality factor, the designed peak detuning specification is 10 Hz. Initial testing showed peak detuning up to 150 Hz with a complex and varying time-structure, showing both fast (1-2 second) and slow (1-2 hour) drifts in amplitude and spectrum. Extensive warm and cold testing showed Thermoacoustic Oscillations in the cryogenic valves were the primary source of the microphonics. This was mitigated by valve wipers and valve re-plumbing, resulting in a greatly improved cavity detuning environment. Additional modifications were made to the cavity mechanical supports and Fermilab test stand to improve detuning performance. These modifications and testing results will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML002 Design of 650 MHz Tuner for PIP-II Project 2671
 
  • Y.M. Pischalnikov, S. Cheban, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Proton Improvement Plan (PIP) II project at Fermilab is a proton driver linac which will use of five different cavity geometries including a 650 MHz 5-cell elliptical cavities that will operate in RF-pulse mode. Detuning of these cavities by Lorentz Forces will be large and strongly depend of the stiffness of the cavity's tuner. First prototype tuner built and tested warm [1,2]. Measured stiffness of the prototype tuner was below 30kN/mm instead of expected from simulation 70kN/mm [2]. Significant effort has been invested into understanding discrepancy between simulation and experimental data that led to newest tuner design. Updated 'dressed cavity-helium vessel-tuner' model provided consistent results between ANSYS simulations and experiment results. Modified tuner design and analysis in limitations for overall 'cavity/tuner system' stiffness will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML003 Precision Q0 Measurement of an SRF Cavity with a Digital RF Techniques 2674
 
  • J.P. Holzbauer, B.M. Hanna, Y.M. Pischalnikov, W. Schappert, D.A. Sergatskov, A.I. Sukhanov
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Direct measurement of the quality factor of SRF cavity using traditional RF techniques is essential for cavity production and development. Systematic effects of the measurement can contribute significant amounts of error to these measurements if not accounted for. This paper will present measurements taken at Fermilab using a digital RF system to characterize and correct for these systematic effects and directly measure the quality factor versus gradient curve for a single spoke resonator in the Spoke Test Cryostat at Fermilab. These measurements will be compared to traditional calorimetric measurements, and a discussion of improving/extending these techniques to other testing situations will be included.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML004 Production Tuner Testing for LCLS-II Cryomodule Production 2678
 
  • J.P. Holzbauer, Y.M. Pischalnikov, W. Schappert, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
LCLS-II 1.3 GHz cryomodule production is well underway at Fermilab. Several dozen cavity/tuner systems have been tested, including tuning to 1.3 GHz, cold landing frequency, range/sensitivity of the slow tuner, and range/sensitivity of the fast tuner. All this testing information as well as lessons learned from tuner installation will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML005 Testing of SSR1 Production Tuner for PIP-II 2681
 
  • J.P. Holzbauer, D. Passarelli, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The PIP-II project at Fermilab is a proton driver linac calling for the use of five different, novel cavity geometries. Prototyping at Fermilab is in the advanced stages for the low-beta single-spoke resonator (SSR1) and associated technologies. A production tuner design has been fabricated and tested, both warm and cold in the Spoke Test Cryostat (STC). This paper will present the detailed studies on this tuner, including slow motor/piezoelectric tuner range and hysteresis as well as dynamic mechanical system characterization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML006 Modified Slow Tuner Design for Cavity 1 Inside LCLS II Cryomodules 2684
 
  • Y.M. Pischalnikov, T.T. Arkan, S. Cheban, J.P. Holzbauer, J.A. Kaluzny, Y.O. Orlov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Initial LCLS-II cryomodule testing at Fermilab showed microphonics on the furthest upstream cavity (number 1) at least factor 2 larger than on the rest of the cavities. Testing indicated that this was a difference in the mechanical support of cavity 1, not a local acoustic source. Further investigation pointed to the upstream beam-pipe of the cavity 1. The upstream cavity flange has a solid spool piece connection to the beamline gate valve unlike the other cavities, which all connect through bellows. The gate valve's weight is supported by sliding system (free in z-axis) connected to large diameter Helium gas return pipe. The tuner design was modified to transform interface between cavity#1 and gate valve. Arms of the tuner for cavity 1 were extended and became the support structure for gate valve, eliminating the connection to the helium return pipe. Modification of the tuner design and results in microphonics mitigations will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML007 Active Microphonics Compensation for LCLS-II 2687
 
  • J.P. Holzbauer, B.E. Chase, J. Einstein-Curtis, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle, C. Serrano
    LBNL, Berkeley, California, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Testing of early LCLS-II cryomodules showed microphonics-induced detuning levels well above specification. As part of a risk-mitigation effort, a collaboration was formed between SLAC, LBNL, and Fermilab to develop and implement active microphonics compensation into the LCLS-II LLRF system. Compensation was first demonstrated using a Fermilab FPGA-based development system compensating on single cavities, then with the LCLS-II LLRF system on single and multiple cavities simultaneously. The primary technique used for this effort is a bank of narrowband filter set using the piezo-to-detuning transfer function. Compensation automation, optimization, and stability studies were done. Details of the techniques used, firmware/software implementation, and results of these studies will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML008 Tuner Testing of a Dressed 3.9 GHz Cavity for LCLS-II at Fermilab 2690
 
  • J.P. Holzbauer, S. Aderhold, T.N. Khabiboulline, Y.M. Pischalnikov, W. Schappert, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Fermilab is responsible for the design of the 3.9 GHz cryomodule for LCLS-II. Integrated acceptance testing of a dressed 3.9 GHz cavity for the LCLS-II project has been done at the Fermilab Horizontal Test Stand. This test included a slim blade tuner (based on INFN & XFEL designs) with integrated piezoelectric fast/fine tuner. This paper will present results of the mechanical setup, cold testing, and cold function of this tuner including fast and slow tuner range, sensitivity, and hysteresis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYGBE3 RF Controls for High-Q Cavities for the LCLS-II 2929
 
  • C. Serrano, K.S. Campbell, L.R. Doolittle, G. Huang, A. Ratti
    LBNL, Berkeley, California, USA
  • R. Bachimanchi, C. Hovater
    JLab, Newport News, Virginia, USA
  • A.L. Benwell, M. Boyes, G.W. Brown, D. Cha, G. Dalit, J.A. Diaz Cruz, J. Jones, R.S. Kelly, A. McCollough
    SLAC, Menlo Park, California, USA
  • B.E. Chase, E. Cullerton, J. Einstein-Curtis, J.P. Holzbauer, D.W. Klepec, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, Illinois, USA
  • L.R. Dalesio, M.A. Davidsaver
    Osprey DCS LLC, Ocean City, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract n. DE-AC02-76SF00515.
The SLAC National Accelerator Laboratory is building LCLS-II, a new 4 GeV CW superconducting (SCRF) Linac as a major upgrade of the existing LCLS. The LCLS-II Low-Level Radio Frequency (LLRF) collaboration is a multi-lab effort within the Department of Energy (DOE) accelerator complex. The necessity of high longitudinal beam stability of LCLS-II imposes tight amplitude and phase stability requirements on the LLRF system (up to 0.01% in amplitude and 0.01° in phase RMS). This is the first time such requirements are expected of superconducting cavities operating in continuous-wave (CW) mode. Initial measurements on the Cryomodule test stands at partner labs have shown that the early production units are able to meet the extrapolated hardware requirements to achieve such levels of performance. A large effort is currently underway for system integration, Experimental Physics and Industrial Control System (EPICS) controls, transfer of knowledge from the partner labs to SLAC and the production and testing of 76 racks of LLRF equipment.
 
slides icon Slides THYGBE3 [14.383 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL034 Dynamic Tuner Development for Medium β Superconducting Elliptical Cavities 3709
SUSPL090   use link to see paper's listing under its alternate paper code  
 
  • C. Contreras-Martinez, P.N. Ostroumov
    FRIB, East Lansing, USA
  • E. Borissov, S. Cheban, Y.M. Pischalnikov, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by U.S. DOE SCGSR program under contract number DE-SC0014664, Michigan State University, and Fermi Research Alliance under contract N. DEAC02-07CH11959 with the U.S. DOE
The Facility for Rare Isotope Beams (FRIB) is developing a 5-cell 644 MHz βopt=0.65 elliptical cavity for a future linac energy upgrade to 400 MeV/u for the heaviest uranium ions. Superconducting elliptical cavities operated in continuous wave, such as the ones for FRIB, are prone to microphonics which can excite mechanical modes of the cavities. It has been shown that the detuning due to microphonics can be mitigated with the use of piezo actuators (fast tuner) as opposed to the costly option of increasing the input RF power. The FRIB slow/fast dynamic tuner will be based on the Fermilab experience with similar tuners like those developed for the linac coherent light source (LCLS) II and proton improvement plan (PIP) II. This paper will present the results of tuner properties on the bench.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)