Author: Aulenbacher, K.
Paper Title Page
MOPB023 Further Layout Investigations for a Superconducting CW-linac for Heavy Ions at GSI 108
 
  • W.A. Barth, K. Aulenbacher, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and very short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium beam energies. To keep the GSI-Super Heavy Element program competitive on a high level and even beyond, a standalone sc continuous wave Linac in combination with the GSI High Charge State injector, upgraded for cw-operation, is envisaged. The first LINAC section (financed by HIM and GSI) as a demonstration of the capability of 216 MHz multi gap Crossbar H-structures (CH) is still in the beam commissioning phase, while an accelerating gradient of 9.6 MV/m (4 K) at a sufficient quality factor has been already reached. Recently the overall Linac design, based on a standard cryomodule, comprising three CH cavities, a rebuncher section and two 9.3 T-solenoidal lenses, has to be fixed. This paper presents the status of the Linac layout studies as well as the integration in the GSI accelerator facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB024 Steps Towards Superconducting CW-linac for Heavy Ions at GSI 112
 
  • M. Miski-Oglu, M. Amberg, K. Aulenbacher, W.A. Barth
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, V. Gettmann, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  A superconducting (sc) cw-Linac at GSI should ensure competitive production of Super Heavies in the future. Further R&D for this cw-Linac, a so called 'Advanced CW-Demonstrator', with maximal energy of 3.5 MeV/u is ongoing. As a first step, the demonstrator project with one sc CH-cavity is near its completion, the beam tests are scheduled for mid-summer 2017. The completion of the 'Advanced CW-Demonstrator' includes successive construction of two new cryogenic modules comprising four CH-cavities and two solenoids each. In this contribution the layout of the cryomodules and the Helium distribution system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB094 Commissioning of Demonstrator Module for CW Heavy Ion LINAC@GSI 283
 
  • V. Gettmann, K. Aulenbacher, W.A. Barth, F.D. Dziuba, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The cw - Linac - demonstrator is a prototype of the first section of the proposed cw-LINAC@GSI, comprising a superconducting CH-cavity embedded by two superconducting solenoids. The sc CH-structure is the key component and offers a variety of research and development. The beam focusing solenoids provide maximum fields of 9.3 T at an overall length of 380 mm and a free beam aperture of 30 mm. The magnetic induction at the fringe is minimized to 50 mT at the inner NbTi-surface of the neighboring cavity. The fabrication of the key components is finished, as well as the cold performance testing of the RF cavity. The cryostat is ready for assembling and the test environment is completely prepared. After successful testing of the RF-Power coupler, the components will be assembled to the suspended frame under cleanroom conditions. Alignment, assembly, under cleanroom condition issues will be presented.  
poster icon Poster MOPB094 [2.881 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB101 Cryomodule Fabrication and Modification for High Current Operation at the Mainz Energy Recovering Superconducting Accelerator MESA 297
 
  • T. Stengler, K. Aulenbacher, F. Hug, D. Simon
    IKP, Mainz, Germany
  • K. Aulenbacher, T. Kürzeder
    HIM, Mainz, Germany
 
  Funding: This work is supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA" EXC 1098/2014}
At Johannes Gutenberg-Universität Mainz, the Institute for Nuclear Physics is currently building the multiturn ERL 'Mainz Energy-Recovering Superconducting Accelerator' MESA. The §I{1.3}{\giga\hertz} cryomodules are based on the ELBE modules at Helmholtz Center Dresden-Rossendorf (HZDR) but are modified to suit the high current, energy recovering purposes of MESA. With two 9-cell TESLA cavities each, they shall provide §I{50}{\mega\electronvolt} energy gain per turn. The design and fabrication was done by Research Instruments GmbH, Bergisch Gladbach, Germany. The current status of the cryomodules, the test set up at the Helmholtz-Institute Mainz, the cavity properties and their tests will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB022 First Measurements of the Next SC CH-cavities for the New Superconducting CW Heavy Ion Linac at GSI 433
 
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
 
  In the future the existing GSI-UNILAC (Universal Linear Accelerator) will primarily be used to provide high power heavy ion beams at a low repetition rate for the FAIR project (Facility for Antiproton and Ion Research). To keep the ambitious Super Heavy Element (SHE) physics program at GSI competitive a superconducting (sc) continuous wave (cw) high intensity heavy ion LINAC is highly desirable to provide ion beams at or above the coulomb barrier [*]. The fundamental linac design composes a high performance ion source, a new low energy beam transport line, the High Charge State Injector (HLI) upgraded for cw, and a matching line (1.4 MeV/u) followed by the new sc-DTL LINAC for acceleration up to 7.3 MeV/u. The construction of the first demonstrator section has been finished in the 3rd quarter of 2016. It comprises the first crossbar-H-mode (CH) cavity with two sc 9.3 T solenoids and has been successfully tested in the end of 2016 [**]. Currently the next two sc 8 gap CH-cavities are under construction at Research Instruments (RI). First intermediate measurements during the fabrication process as well as the latest status of the construction phase will be presented.
*W. Barth et al., Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC2014, THPME004
**F. Dziuba et al., First cold tests of the superconducting cw demonstrator at GSI, RuPAC2016, WECBMH01
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB024 Performance Tests of the Superconducting 217 MHz CH Cavity for the CW Demonstrator 440
 
  • F.D. Dziuba, M. Amberg, K. Aulenbacher, W.A. Barth, V. Gettmann, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Amberg, M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
 
  Regarding the future research program of super heavy element (SHE) synthesis at GSI, high intense heavy ion beams above the coulomb barrier and high average particle currents are highly demanded. The associated beam requirements exceed the capabilities of the existing Universal Linear Accelerator (UNILAC). Besides the existing GSI accelerator chain will be exclusively used as an injector for FAIR (Facility for Antiproton and Ion Research) providing high power heavy ion beams at a low repetition rate. As a consequence a new dedicated superconducting (sc) continuous wave (cw) linac is highly demanded to keep the SHE research program at GSI competitive on a high level. In this context the construction of the first linac section, which serves simultaneously as a prototype to demonstrate its reliable operability has been finished at the end of 2016. The so called demonstrator cryomodule comprises two sc 9.3 T solenoids and a sc 217 MHz crossbar-H-mode (CH) cavity with 15 equidistant accelerating gaps. Furthermore, the performance of the cavity has been successfully tested at cryogenic temperatures. The results of these tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)