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Abstract 
In vacuum chamber of SR source, scattered photons 

provide high intensity flows of photo emitted electrons 
along the magnetic field lines. The unperturbed electrons 
reach the opposite walls. The relativistic bunches 
influence the trajectories of low energy electrons. These 
electrons can be trapped by non-uniform magnetic field. 
The low energy electron distributions change the 
operating settings of the storage ring. For Siberia-2 case, 
the low energy electrons are evaluated both in quadrupole 
lenses and in superconducting wiggler on 7.5 T field. The 
qualitative description of the trapped electrons behaviour 
was developed. In calculations, the analytical solution 
was obtained and used for estimations of single impact of 
relativistic bunch. 

INTRODUCTION 
The electron storage ring Siberia - 2 is 124 m in length 

with electron beam energies from 450 Mev up to 2.5 Gev. 
Beam life time is about 20 -30 hours in regular mode at 
the electron beam currents above 100 mA. Siberia-2 
storage ring is equipped with a superconducting wiggler 
with magnetic field up to 7.5 Tesla.  

This study is initiated by ultrasound measurements at 
walls of the Syberia-2 vacuum chamber [1]. Ultrasound 
signals increase with the beam current but appear only if 
the beam current exceeds some threshold. In this report, 
an analytical approach is developed for describing 
trapping and storage of the low energy secondary particles 
in spatially non-uniform magnetic fields.  

In adiabatic approximation, the low energy particle can 
be considered as a small magnetic dipole with invariant 
momentum magnitude and oppositely directed to the 
external magnetic field. Particles oscillate along the 
magnetic field lines. Relativistic electron beam bunches 
circularly move in the storage ring. They periodically kick 
the secondary electrons by its electric field. Being 
strongly kicked, the secondary electrons move towards 
storage ring vacuum chamber. We have derived here the 
analytic expression for transversal component of the 
secondary electron momentum, which they acquire due to 
electromagnetic interaction with the electron beam bunch.  

LOW ENERGY PARTICLES IN SLOW 
VARYING SPATIALLY NON UNIFORM 

MAGNETIC FIELDS 
In uniform magnetic fields, particle trajectories are the 

regular spirals consisting of the circular transverse motion 
and the longitudinal motion along the magnetic field line. 
The transverse motion parameters are illustrated in Table 
1 for electrons with 1 eV kinetic energy.  
Table 1: Transvers motion parameters for 1 eV electrons 
Field, T 0.01 0.1 1 
Radius, mm 0.34 0.034 0.0034 
Frequency, GHz 0.28 2.8 28 

Adiabatic Approximation 
In spatially non-uniform slowly varying magnetic field, 

the equations of particle motion can be averaged over the 
transverse circular motion of the particles (adiabatic 
approximation [2]). This approximation provides good 
results if the transverse trajectory radii are much smaller 
the radii of magnetic lines curvature. Time averaging 
procedure is illustrated at Fig.1. Spatial variation of 
magnetic field B

r
 initiates the normal field component 

nB  which relates the transverse to longitudinal motions: 

∫= dlB
r

qV
dt
dvm nπ2

,        ∫−= dlB
r

qv
dt
dVm nπ2
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These equations can be transformed to  
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Directional derivative 
ds
dB

 is the magnetic field gradient 

along the magnetic field line. In mentioned above 
transformations, resulted from Maxwell equation 

0=Bdiv  relation 2r
ds
dBdlBn π=∫  is used. 

 
 
 
 
 
 
 
 
 
 
Figure 1: Sketch of an electron motion in magnetic field.  
 
Two values are conserved in adiabatic approximation (1):  

constVv =+ 22 ,         constBv =2 .  (2) 

Low Energy Particles in Quadrupole Plane field 
The magnetic field may be considered as a planar one 

in the vicinity of the quadrupole lens centre, see Fig. 2.  
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Figure 2: Particle motion in quadrupole magnetic field. 

In Cartesian coordinate system ),,( ζξ y , planar field B  
can be described as 
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where wa  is the radius of the vacuum chamber and wB  is 
the magnetic field magnitude at the chamber walls. The 
magnetic field lines are hyperbolas. The field magnitude 
B  is proportional to the distance R  from the quadrupole 
axis: 

R
a
BB

w

w=  .   (3) 

In adiabatic approximation, particle moves along 
magnetic field line with 0R  shortest distance from the 
quadrupole axis (Fig. 2). The current particle position at 
this line is determined by distance R  from quadrupole 
axis. At shortest distance 0R , particle has transversal 0v  

and longitudinal 0V  components of its velocity, see Fig. 2. 

The relative transverse velocity 00 Vvk =  is of 
considerable importance in particle dynamics under 
considiration. 

It follows from relations (2) and (3) that the 
longitudinal velocity V  is equal to:  

( )
0

22
0 1,

R
RkkVkRV −+±= .  (4)

 

It can be easily found from Eq. (4) that in this case the 
particle anharmonically oscillates [3] along the magnetic 
field line with amplitude maxR , which is equal to:  

020max
1 R

k
RR += .  (5)

 

This relation illustrates the restricting role of the 
transverse motion – the more the relative transverse 
velocity, the less the amplitude of particle oscillations. 

The longitudinal velocity (4) and the geometry of 
hyperbola give the following differential equation for 
radial oscillations:  
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The period T  of adiabatic oscillations is equal to:  
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Corresponding adiabatic oscillations frequency FC(k) is 
shown at Fig. 3 as a function of the relative transverse 
velocity k  ( 5

0 10=V  m/s and 01.00 =R  m are taken 
for example). We mention that this dependence is almost 
linear in relative velocities exceeding approximately one. 

Figure 3: Adiabatic oscillation frequency. 
Particles Space Distributions in Quadrupole 

Steady-state space distribution functions can be 
constructed on the basis of the following two aspects. 
Firstly, along the magnetic field line the linear density is 
varying inversely to the longitudinal velocity of particles. 
Secondly, along the magnetic field line, the space density 
is proportional to the magnetic field magnitude. The space 
distribution function ),( 0 RRρ can be written as 
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In this expression, )(kK  is the particle distribution with 
relative velocities k , the upper and the lower limits of 
integration choose the particles reaching distance R  but 
not reaching the walls. For example, the distribution 

( )2
3

21/)( kkkK +=  gives the particle space density 

wa
RRRRR −= 1),(),( 000 ρρ . 

This density is almost uniform if the ratio waR /  is small 
enough and the walls influence can be neglected. 

ELECTRON BEAM BUNCH ACTION ON 
SECONDARY ELECTRONS 

An electron beam bunch, moving along the storage ring 
equilibrium trajectory, interacts with the secondary 
electrons, which are trapped by the non-uniform magnetic 
field, via its electromagnetic field. As a result of 
interelectron repulsive force, the secondary electron 
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located at the point },0,{ zxX =
r

 will acquire an 
additional transverse momentum prΔ  in the vacuum 
chamber wall direction, see Fig. 4.  

 
Figure 4: Sketch of cylindrical bunch action on electrons.  

 
The secondary electron motion is given by the equation:  

 )()( τ
τ
τ Ee

d
pd rr

= .     (6) 

Here 0<e  is an electron charge, )(τE
r

 is time (τ ) 
dependent electric field. We suppose that the repulsive 
push, made by high-energy electron from the storage ring 
beam bunch, is very short due to relativistic effects. If so, 
we can ignore the secondary electron drift during the 
kick. Integrating Eq. (6), we get the expression for the 
momentum increment acquired by the secondary electron:  

  ∫
∞

∞−

=Δ ττ dEep )(
rr

    (7) 

For calculating of electric field )(τE
r

 generated by a 
relativistic electron, approximate expressions in the wave 
zone (far-field approximation) are usually employed. In 
our case the secondary electrons can be arbitrary close to 
the high-energy beam electrons, and exact expressions for 
electromagnetic fields should be used.  

Let us consider the electric field of an electron moving 
along trajectory )(trv , with velocity )(tvr , reduced 

velocity ctvt )()( rr
=β  and reduced acceleration )(tβ&

r
. 

The electric field is given by the exact expression [2]:  
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Here, the vector )()( trXtD rrr
−=  with absolute 

value )(tD  represents the distance between the emission 
point points from the instantaneous position of the 

electron to the observer. The quantities )(tnr , )(tβ
r

, )(tβ&
r

 
and )(tD  on the right-hand side of Eq. (8) are to be 
evaluated at the retarded time t  which must obey the 
equation [2]:  

)(tRctc +=τ     (9) 

Integrating Eq. (8) over τ  and using Eq. (9), we get the 
following relation:  

 ( )∫∫
∞

∞−

∞

∞−

= dttDtDedE )()()( 3rr
ττ .   (10) 

We mention in passing that Eq. (10) is an exact result of 
integration, if only the electron from the high-energy 
beam is infinitely far at ±∞=τ . In our case the variable 

)(tD
r

 in Eq. (10) depends only weakly on the electron 
trajectory details, and we can consider the case of straight 
- line moving high-energy electron in (10):  

},,{)( 000 zyx rtcrrtr β+=
r

.   (11) 
Substituting Eq. (11) into Eq. (10), we get from Eq. (7):  

  2

22
βρ
ρ

c
ep
r

r
=Δ ,     (12) 

where },0,{ 00 zx rzrx −−=ρ
r

.  
For simplicity, we will consider cylindrical bunch with 

radius R , length l  and total number of electrons N , see. 
Fig. 4. Integrating Eq. (12) over the cylindrical bunch 
volume, we find that the electron beam bunch impact with 
the secondary electron changes the transversal momentum 
of the latter by the value:  
      ( ) ( )222 RcXNep β

rr
=Δ ,                  RX ≤

r
,  (13) 

      ( ) ⎟
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Maximum value for prΔ  is achieved at RX =
r

 and is 

equal to ( ) ( )RcNep β22=Δ
r

. It corresponds to the 
secondary electron energy change of about of 5.4 keV for 
the Siberia-2 storage ring: electron beam current is equal 
to 5 mA at one-bunch mode and mmR 5.0≅ .  

CONCLUSION 
In this report we considered the theoretical background 

for non-relativistic secondary electrons accumulation and 
storage and its interaction with the relativistic electron 
beam. The phenomenon seems rather clear for theoretical 
description. At the same time comprehensive numerical 
simulations should be carried out in the future.  
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