A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tsoupas, N.

Paper Title Page
MOPA007 Polarized Proton Collisions at RHIC 600
 
  • M. Bai, L. Ahrens, J.G. Alessi, J. Beebe-Wang, M. Blaskiewicz, A. Bravar, J.M. Brennan, D. Bruno, G. Bunce, J.J. Butler, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fischer, G. Ganetis, C.J. Gardner, J. Glenn, T. Hayes, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, J.S. Laster, R.C. Lee, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, G.J. Marr, A. Marusic, G.T. McIntyre, R.J. Michnoff, C. Montag, J. Morris, T. Nicoletti, P. Oddo, B. Oerter, O. Osamu, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, K. Smith, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, K. Vetter, M. Wilinski, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • I.G. Alekseev, D. Svirida
    ITEP, Moscow
 
  Funding: The work was performed under the auspices of the U.S. Department of Energy and RIKEN Japan.

The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

 
MPPT070 Construction and Power Test of the Extraction Kicker Magnet for the Spallation Neutron Source Accumulator Ring 3831
 
  • C. Pai, H. Hahn, H.-C. Hseuh, Y.Y. Lee, W. Meng, J.-L. Mi, D. Raparia, J. Sandberg, R.J. Todd, N. Tsoupas, J.E. Tuozzolo, D.S. Warburton, J. Wei, D. Weiss, W. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to ORNL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TiN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply.

 
MPPT071 The Lambertson Septum Magnet of the Spallation Neutron Source 3847
 
  • J. Rank, Y.Y. Lee, W.J. McGahern, G. Miglionico, D. Raparia, N. Tsoupas, J.E. Tuozzolo, J. Wei
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under contract for SNS, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

In the Spallation Neutron Source, at Oak Ridge National Laboratory in Tennessee, multiple-stage injections to an accumulator ring increase intensity until a final extraction delivers the full proton beam to the target via transfer line. This extraction is achieved by a series of kicker elements and a thin septum Extraction Lambertson Septum Magnet. Here we discuss the lattice geometry, beam dynamics and optics, and the vacuum, electromagnetic and electromechanical design aspects of the SNS Extraction Lambertson Septum Magnet. Relevant datums are established. Beam optics is studied. Vector calculus is solved for pitch and roll angles. Fundamental magnet sections are depicted schematically. Coil, pole and yoke design calculations and electromagnetics optimization are presented.

 
MPPT072 3D Simulation Studies of SNS Ring Doublet Magnets 3865
 
  • J.-G. Wang
    ORNL, Oak Ridge, Tennessee
  • N. Tsoupas
    BNL, Upton, Long Island, New York
  • M. Venturini
    LBNL, Berkeley, California
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublet magnets with large aperture of R=15.1 cm and relatively short iron-to-iron distance of 51.4 cm.* The magnetic interference among the magnets in the doublet assemblies is not avoidable due to the fringe fields. Though each magnet in the assemblies has been individually mapped to high accuracy of delta(B)/B~1x10-4, the experimental data including the magnet interference effect in the assemblies will not be available. We have performed 3D computer simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data which should be very useful for the SNS commissioning and operation. This paper reports our simulation results.

*N. Tsoupas et al. "A Large-aperture Narrow Quadrupole for the SNS Accumulator Ring," Proc. EPAC 2002, p.1106, Paris, June 3-7, 2002.

 
MPPT046 Superconducting Helical Snake Magnet for the AGS 2935
 
  • E. Willen, M. Anerella, J. Escallier, G. Ganetis, A. Ghosh, R.C. Gupta, M. Harrison, A.K. Jain, A.U. Luccio, W.W. MacKay, A. Marone, J.F. Muratore, S.R. Plate, T. Roser, N. Tsoupas, P. Wanderer
    BNL, Upton, Long Island, New York
  • M. Okamura
    RIKEN, Saitama
 
  Funding: DOE

A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that the magnet can operate in the AGS cooled by several cryocoolers. The design, construction and performance of this unique magnet will be summarized.

 
TPAT093 Operations and Performance of RHIC as a Cu-Cu Collider 4281
 
  • F.C. Pilat, L. Ahrens, M. Bai, D.S. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fischer, G. Ganetis, C.J. Gardner, J. Glenn, M. Harvey, T. Hayes, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, G.J. Marr, A. Marusic, R.J. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, V. Ptitsyn, T. Roser, T. Russo, J. Sandberg, T. Satogata, C. Schultheiss, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, K. Vetter, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the U.S. Department of Energy.

The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons at 100 GeV. We will address here overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a ?* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements and machine performance limitations, such as vacuum pressure rise, intra-beam scattering, and beam beam interaction.

 
RPPT065 Beam Loss Estimates and Control for the BNL Neutrino Facility 3647
 
  • W.-T. Weng, J. Beebe-Wang, Y.Y. Lee, D. Raparia, N. Tsoupas, J. Wei, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: This work is performed under the auspices of the US DOE.

BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW for a very long baseline neutrino oscillation experiment. This increase in beam power is mainly due to the faster repetition rate of the AGS by a new 1.5 GeV superconductiong linac as injector, replacing the existing booster. The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations for achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realising the required goals. The process considered in this paper include the emittance growth in the linac, the H- injection, the transition crossing, the ecectron cloud effect, the coherent instabilities, and the extraction losses. Collimation and shielding are also presented.

 
FPAT059 Event Driven Automatic State Modification of BNL's Booster for NASA Space Radiation Laboratory Solor Particle Simulator 3447
 
  • K.A. Brown, S. Binello, M. Harvey, J. Morris, A. Rusek, N. Tsoupas
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract #DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will desribe the system and present results of beam tests.

 
FPAE006 Optimization of AGS Polarized Proton Operation with the Warm Helical Snake 1003
 
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • L. Ahrens, M. Bai, K.A. Brown, C.J. Gardner, J. Glenn, H. Huang, A.U. Luccio, W.W. MacKay, T. Roser, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
 
  Funding: US DOE and RIKEN Japan.

A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

 
FPAE014 Acceleration of Polarized Protons in the AGS with Two Helical Partial Snakes 1404
 
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, G. Bunce, E.D. Courant, C.J. Gardner, J. Glenn, R.C. Gupta, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, E. Willen, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura
    RIKEN/RARF/CC, Saitama
  • J. Takano
    RIKEN, Saitama
  • D.G. Underwood
    ANL, Argonne, Illinois
  • J. Wood
    UCLA, Los Angeles, California
 
  Funding: Work supported by U.S. DOE and RIKEN of Japan.

The RHIC spin program requires 2*1011 proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is not enough space in the ring to install a full snake to overcome the numerous depolarizing resonances. An ac dipole and a partial Siberian snake have been used to preserve beam polarization in the past. The correction with this scheme is not 100% since not all depolarizing resonances can be overcome. Recently, two helical snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

 
FPAE029 Setup and Performance of the RHIC Injector Accelerators for the 2005 Run with Copper Ions 2068
 
  • C.J. Gardner, L. Ahrens, J.G. Alessi, J. Benjamin, M. Blaskiewicz, J.M. Brennan, K.A. Brown, C. Carlson, J. DeLong, J. Glenn, T. Hayes, W.W. MacKay, G.J. Marr, J. Morris, T. Roser, F. Severino, K. Smith, D. Steski, N. Tsoupas, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the U.S. Department of Energy.

Copper ions for the 2005 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed.