Keyword: closed-orbit
Paper Title Other Keywords Page
MOPOST027 The Zgoubidoo Python Framework for Ray-Tracing Simulations with Zgoubi: Applications to Fixed-Field Accelerators lattice, simulation, FFAG, focusing 118
 
  • M. Vanwelde, E. Gnacadja, C. Hernalsteens, N. Pauly, E. Ramoisiaux, R. Tesse
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
 
  The study of beam dynamics in accelerators featuring main magnets with complex geometries such as Fixed Field Accelerators (FFAs) requires simulation codes allowing step-by-step particle tracking in complex magnetic fields, such as the Zgoubi ray-tracing code. To facilitate the use of Zgoubi and to allow readily processing the resulting tracking data, we developed a modern Python 3 interface, Zgoubidoo, using Zgoubi in the backend. In this work, the key features of Zgoubidoo are illustrated by detailing the main steps to obtain a non-scaling FFA accelerator from a scaling design. The results obtained are in excellent agreement with prior results, including the tune computation and orbit shifts. These results are enhanced by Zgoubidoo beam dynamics analysis and visualization tools, including the placement of lattice elements in a global coordinate system and the computation of linear step-by-step optics. The validation of Zgoubidoo on conventional scaling and non-scaling FFA designs paves the way for future uses in innovative FFA design studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST027  
About • Received ※ 16 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST028 Tune Control in Fixed Field Accelerators lattice, focusing, multipole, controls 122
 
  • A.F. Steinberg, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Fixed Field Alternating Gradient Accelerators have been proposed for a wide range of challenges, including rapid acceleration in a muon collider, and large energy acceptance beam transport for medical applications. A disadvantage of these proposals is the highly nonlinear field profile required to keep the tune energy-independent, known as the scaling condition. It has been shown computationally that approximately constant tunes can be achieved with the addition of nonlinear fields which do not follow this scaling law. However the impacts of these nonlinearities are not well understood. We present a new framework for adding nonlinearities to Fixed Field Accelerators, seeking a constant normalised focusing strength over the full energy range, and verify the results by simulation using Zgoubi. As a model use case, we investigate the degree of tune compensation that can be achieved in a Fixed Field Accelerator for ion cancer therapy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST028  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK036 Studies of the Vertical Excursion Fixed Field Alternating Gradient Accelerator lattice, quadrupole, optics, simulation 535
 
  • M.E. Topp-Mugglestone, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • J.-B. Lagrange, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Vertical Excursion Fixed Field Alternating Gradient Accelerator (VFFA) concept offers a number of advantages over existing accelerator archetypes, as discussed in previous works. However, the VFFA has nonplanar orbits by design and unavoidable transverse coupling. Hence, current understanding of the dynamics of this machine is limited; this paper presents some in-depth study of its behaviour using a combination of analytical and numerical techniques.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK036  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST014 Studies on Pre-Computation of SPS-to-LHC Transfer Line Corrections injection, extraction, target, proton 1711
 
  • C. Bracco, F.M. Velotti
    CERN, Meyrin, Switzerland
 
  The injection process in the LHC gives a non-negligible contribution to the turnaround time between two consecutive physics fills. Mainly due to orbit drifts in the SPS, the steering of the SPS-to-LHC transfer lines (TL) had to be regularly performed in view of minimising injection oscillations and losses, which otherwise would trigger beam dumps. Moreover, for machine protection purposes, a maximum of twelve bunches had to be injected after any TL steering to validate the actual applied corrections. This implied at several occasions the need to interrupt a fill to steer the lines and introduced a further delay between fills. Studies were performed to evaluate the option of pre-calculating the required TL corrections based on SPS orbit measurements during the LHC magnet ramp down and the reconstruction of the beam position and angle at the SPS extraction point.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST014  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT012 MAD-X for Future Accelerators coupling, optics, GUI, simulation 1858
 
  • T.H.B. Persson, H. Burkhardt, R. De Maria, L. Deniau, E.J. Høydalsvik, A. Latina, P.K. Skowroński, R. Tomás García, L. van Riesen-Haupt
    CERN, Meyrin, Switzerland
 
  The development of MAD-X was started more than 20 years ago and it still remains the main tool for single particle dynamics for both optics design, error studies as well as for operational model-based software at CERN. In this article, we outline some of the recent development of MAD-X and plans for the future. In particular, we focus on the development of the twiss module used to calculate optics functions in MAD-X which is based on first and second order matrices. These have traditionally been calculated as an expansion around the ideal orbit. In this paper, we describe explicitly how an expansion around the closed orbit can be employed instead, in order to get more precise results. We also describe the latest development of the beam-beam long range wire compensator in MAD-X, an element that has been implemented using the aforementioned approach.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT012  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT019 RHIC Blue Snake Blues polarization, operation, optics, simulation 1881
 
  • F. Méot, E.C. Aschenauer, H. Huang, A. Marusic, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Two helical full snakes are used in both Blue and Yellow rings of RHIC collider, in order to preserve beam polarization during acceleration to collision energy and polarization lifetime at store. A snake in RHIC is comprised of four 2.4m long modules, powered by pair. During the startup of RHIC Run 22 in December 2021, two successive power dips have caused the 9 o’clock RHIC BlBrookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.ue ring snake to loose two of its four modules. In spite of this regrettable loss, it has been possible to maintain near 180deg snake precession, by proper powering of the remaining two modules, as well as, by re-tuning the 3 o’clock sister snake, vertical spin precession axis around the ring and spin tune 1/2. Determining these new settings, in order to salvage polarization with the handicapped Blue snake pair, has required series of numerical simulations, a brief overview is given here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT019  
About • Received ※ 03 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)