Author: Behtouei, M.
Paper Title Page
MOPAB270 Beam Dynamics Studies in a Standing Wave Ka-band Linearizer 857
 
  • J. Scifo, M. Behtouei, L. Faillace, M. Ferrario, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
  • G. Torrisi
    INFN/LNS, Catania, Italy
 
  Next-generation FEL user facilities require high-quality electron beams with kA peak current. The combination of a high brightness RF injector and a magnetic compression stage represents a very performant solution in terms of electron beam emittance and peak current. One of the important issues is the design of a proper device that acts as a linearizer for the beam longitudinal phase space. Recently, the design of a SW Ka band RF accelerating structure has been proposed with promising results. The paper reports on electron beam dynamics studies in the described RF structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB270  
About • paper received ※ 19 May 2021       paper accepted ※ 29 August 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB353 Design of a compact Ka-Band Mode Launcher for High-gradient Accelerators 1100
 
  • G. Torrisi, G.S. Mauro, G. Sorbello
    INFN/LNS, Catania, Italy
  • M. Behtouei, L. Faillace, B. Spataro, A. Variola
    INFN/LNF, Frascati, Italy
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • L. Faillace, M. Migliorati
    Sapienza University of Rome, Rome, Italy
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G. Sorbello
    University of Catania, Catania, Italy
 
  In this work, we present the RF design of a table-top Ka-Band mode launcher operating at 35.98 GHz. The structure consists of a symmetrical 4-port WR28 rectangular-TE10-to-circular-TM01 mode converter that is used to couple a peak output RF power of 5 MW (pulse length up to 50 ns and repetition rate up to 100 Hz) in Ka-Band linear accelerator able to achieve very high accelerating gradients (up to 200 MV/m). Numerical simulations have been carried out with the 3D full-wave commercial simulator Ansys HFSS in order to obtain a preliminary tuning of the accelerating field flatness at the operating frequency f0=35.98 GHz. The main RF parameters, such as reflection coefficient, transmission losses, and conversion efficiency are given together with a verification of the field azimuthal symmetry which avoids dipole and quadrupole deflecting modes. To simplify future manufacturing, reduce fabrication costs, and also reduce the probability of RF breakdown, the proposed new geometry has "open" configuration. This geometry eliminates the flow of RF currents through critical joints and allows this device to be milled from metal blocks.  
poster icon Poster MOPAB353 [3.131 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB353  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB410 Preliminary Studies of a Compact VHEE Linear Accelerator System for FLASH Radiotherapy 1229
 
  • L. Giuliano, F. Bosco, M. Carillo, D. De Arcangelis, L. Faillace, L. Ficcadenti, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, M. Behtouei, B. Spataro
    INFN/LNF, Frascati, Italy
  • G. Cuttone, G. Torrisi
    INFN/LNS, Catania, Italy
  • V. Favaudon, S. Heinrich, A. Patriarca
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
 
  Funding: The work is supported by La Sapienza University, research grant "grandi progetti di ricerca 2020".
The Flash Radio Therapy is a revolutionary new technique in the cancer cure: it spares healthy tissue from the damage of the ionizing radiation maintaining the tumor control as efficient as in conventional radiotherapy. To allow the implementation of the FLASH Therapy concept into actual clinical use, it is necessary to have a linear accelerator able to deliver the very high dose and very high dose rate (>106 Gy/s) in a very short irradiation time (beam on time < 100ms). Low energy S-band Linacs (up to 7 MeV) are being used in Radiobiology and pre-clinic applications but in order to treat deep tumors, the energy of the electrons should achieve the range of 60-100 MeV. In this paper, we address the main issues in the design of a compact C band (5.712 GHz) electron linac-VHEE for FLASH Radio Therapy. We present preliminary studies on C-band structures at La Sapienza and at INFN-LNS, aiming to reach a high accelerating gradient and high current necessary to deliver a dose >1 Gy/pulse, with very short electron pulse.
 
poster icon Poster MOPAB410 [0.650 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB410  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB051 Beam Dynamics for a High Field C-Band Hybrid Photoinjector 2714
 
  • L. Faillace, F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • M. Behtouei, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, California, USA
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work supported by DARPA GRIT under contract no. 20204571 and partially by INFN National Committee V through the ARYA project.
In this paper, we present a new class of a hybrid photoinjector in C-Band. This project is the effort result of a UCLA/Sapienza/INFN-LNF/SLAC/RadiaBeam collaboration. This device is an integrated structure consisting of an initial standing-wave 2.5-cell gun connected to a traveling-wave section at the input coupler. Such a scheme nearly avoids power reflection back to the klystron, removing the need for a high-power circulator. It also introduces strong velocity bunching due to a 90° phase shift in the accelerating field. A relatively high cathode electric field of 120 MV/m produces a ~4 MeV beam with ~20 MW input RF power in a small foot-print. The beam transverse dynamics are controlled with a ~0.27 T focusing solenoid. We show the simulation results of the RF/magnetic design and the optimized beam dynamics that shows 6D phase space compensation at 250 pC. Proper beam shaping at the cathode yields a ~0.5 mm-mrad transverse emittance. A beam waist occurs simultaneously with a longitudinal focus of <400 fs rms and peak current >600 A. We discuss application of this injector to an Inverse-Compton Scattering system and present corresponding start-to-end beam dynamics simulations.
 
poster icon Poster WEPAB051 [0.827 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB051  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB238 Modeling Short Range Wakefield Effects in a High Gradient Linac 3185
 
  • F. Bosco, M. Carillo, L. Faillace, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • M. Behtouei, L. Faillace, A. Giribono, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • F. Bosco, M. Migliorati
    INFN-Roma1, Rome, Italy
  • L. Giuliano, A. Mostacci, L. Palumbo
    INFN-Roma, Roma, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work is supported by DARPA GRIT under contract no. 20204571 and partially by INFN National committee V through the ARYA project.
The interaction of charged beams with the surrounding accelerating structures requires a thorough investigation due to potential negative effects on the phase space quality. Indeed, the wakefields acting back on the beam are responsible for emittance dilution and instabilities, such as the beam break-up, which limit the performances of electron-based radiation sources and linear colliders. Here we introduce a new tracking code which is meant to investigate the effects of short-range transverse wakefields in linear accelerators. The tracking is based on quasi-analytical models for the beam dynamics which, in addition to the basic optics specified by the applied fields, include dipole wakefield forces and a simple approach to account for space-charge effects. Such features provide a reliable tool which easily allows to inspect the performances of a linac. To validate the model, a parallel analysis for a reference case is performed with well-known beam dynamics codes, and comparisons are shown. As an illustrative application, we discuss a study on alignment tolerances evaluating the emittance growth induced by misaligned accelerating sections.
 
poster icon Poster WEPAB238 [1.747 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB238  
About • paper received ※ 18 May 2021       paper accepted ※ 07 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXB02 Development of 36 GHz RF Systems for RF Linearisers 4518
 
  • A. Castilla, G. Burt
    Lancaster University, Lancaster, United Kingdom
  • M. Behtouei, B. Spataro
    INFN/LNF, Frascati, Italy
  • G. Burt
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.C. Cai, A. Castilla, A. Latina, X. Liu, I. Syratchev, X.W. Wu, W. Wuensch
    CERN, Meyrin, Switzerland
  • J.C. Cai, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A.W. Cross, L. Zhang
    USTRAT/SUPA, Glasgow, United Kingdom
  • L.J.R. Nix
    University of Strathclyde, Glasgow, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431.
As part of the deign studies, the CompactLight project plans to use an injector in the C-band. Which constitutes a particular complication for the harmonic system in charge of linearising the beam’s phase space, since it means its operation frequency could be higher than the standard X-band RF technologies. In the present work, we investigated a 36 GHz (Ka-band) as the ideal frequency for the harmonic system. A set of structure designs are presented as candidates for the lineariser, based on different powering schemes and pulse compressor technologies. The comparison is made both in terms of beam dynamics and RF performance. Given the phase stability requirements for the MW class RF sources needed for this system, we performed careful studies of a Gyro-Klystron and a multi-beam klystron as potential RF sources, with both showing up to 3 MW available power using moderate modulator voltages. Alternatives for pulse compression at Ka-band are also discussed in this work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXB02  
About • paper received ※ 17 May 2021       paper accepted ※ 19 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB256 Three-Dimensional Space Charge Oscillations in a Hybrid Photoinjector 3240
 
  • M. Carillo, M. Behtouei, F. Bosco, L. Faillace, A. Giribono, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati, Italy
 
  Funding: This work supported by DARPA GRIT under contract no. 20204571 and partially by INFN National committee V through the ARYA project.
A new hybrid C-band photo-injector, consisting of a standing wave RF gun connected to a traveling wave structure, operating in a velocity bunching regime, has shown to produce an extremely high brightness beam with very low emittance and a very high peak current through a simultaneous compression of the beam in the longitudinal and transverse dimensions. A beam slice analysis has been performed in order to understand the evolution of the relevant physical parameters of the beam in the longitudinal and transverse phase spaces along the structure. A simple model for the envelope equation has been developed to describe the beam behavior in this particular dynamics regime that we term "triple waist", since all three dimensions reach a minimum condition almost simultaneously. The model analyzes the transverse envelope dynamics at the exit of the hybrid photo-injector, in the downstream drift where the triple waist occurs. The analytical solutions obtained from the envelope equation are compared with the simulations, showing a good agreement. Finally, these results have been analyzed also in terms of plasma oscillation to obtain a further physical interpretation of the beam dynamics.
 
poster icon Poster WEPAB256 [1.162 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB256  
About • paper received ※ 19 May 2021       paper accepted ※ 21 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)