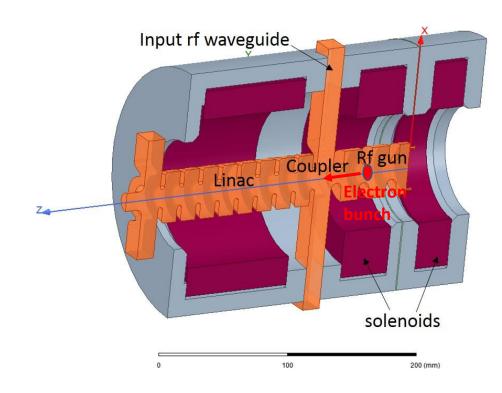


Beam Dynamics for a High Field C-band Hybrid Photoinjector

L. Faillace, ^{1,5} R. Agustsson, ⁴ M. Behtouei, ⁵ F. Bosco, ^{1,6} M. Carillo, ^{1,6} A. Fukasawa, ² I. Gadjev, ⁴ A. Giribono, ⁵ L. Giuliano, ^{1,6} S. Kutsaev, ⁴ N. Majernik, ² M. Migliorati, ^{1,6} A. Mostacci, ^{1,6} A. Murokh, ⁴ L. Palumbo, ^{1,6} B. Spataro, ⁵ S. Tantawi, ³ C. Vaccarezza, ⁵ O. Williams, ² and J.B. Rosenzweig. ²

¹Sapienza University, Rome, Italy ²University of California Los Angeles, California, USA ³SLAC National Accelerator Laboratory, Menlo Park, California, USA ⁴RadiaBeam Systems, Santa Monica, CA, USA ⁵INFN/LNF, Frascati, Italy ⁶INFN/Roma1, Rome, Italy

12th International Particle Accelerator Conference - IPAC'21, May 24-28, 2021



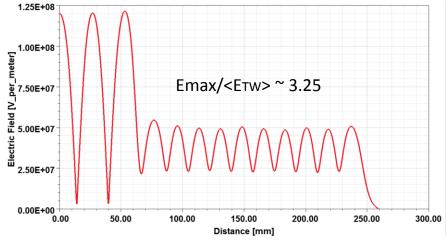
Motivation and Hybrid photoinjector system

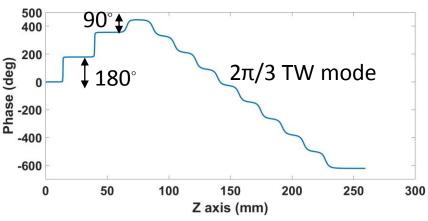
- New class of a hybrid photoinjector in C-Band, f = 5.712 GHz (compact structure);
- \bullet Possibility of high brightness beams, proportional to λ^{-2} ; (more compact than S-band version and more cost-effective from the X-band version),
- Basic scheme RF Gun plus Linac is unchanged but the two structures are aligned and coupled through a single cell (coupler) → Hybrid structure;
- RF power is fed only from one waveguide into the coupler, that transmits it to both structures (mismatch avoided) → No circulator;
- Velocity Bunching between the SW and TW sections, due to $\pi/2$ phase-shift \rightarrow ultra-short electron bunches;
- Solenoid and downstream linacs for emittance compensation.

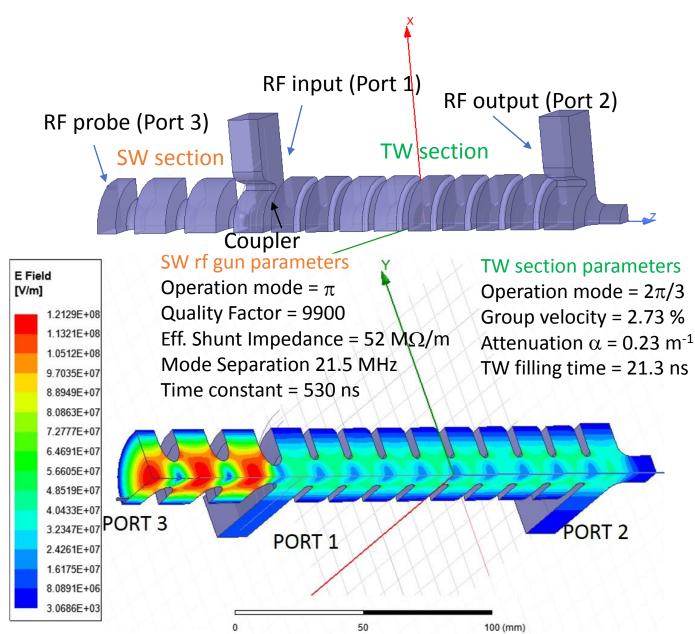
Applications

Injector for FELs interdisciplinary scientific research (biology, medicine, materials science, non-linear optics).

• Inverse Compton Scattering (100 MeV electron beam)

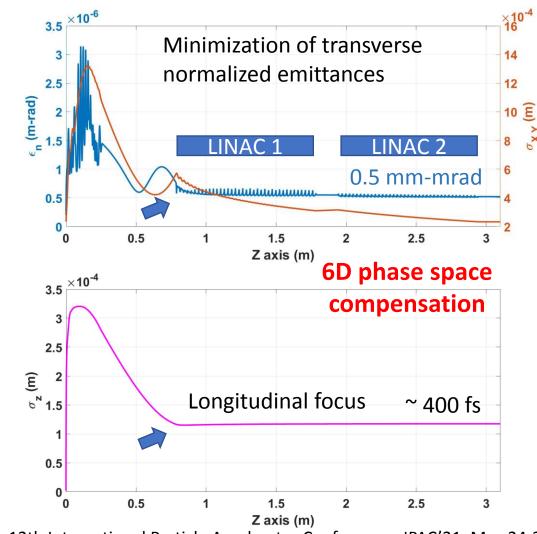

C-Band Hybrid Photoinjector RF Desing





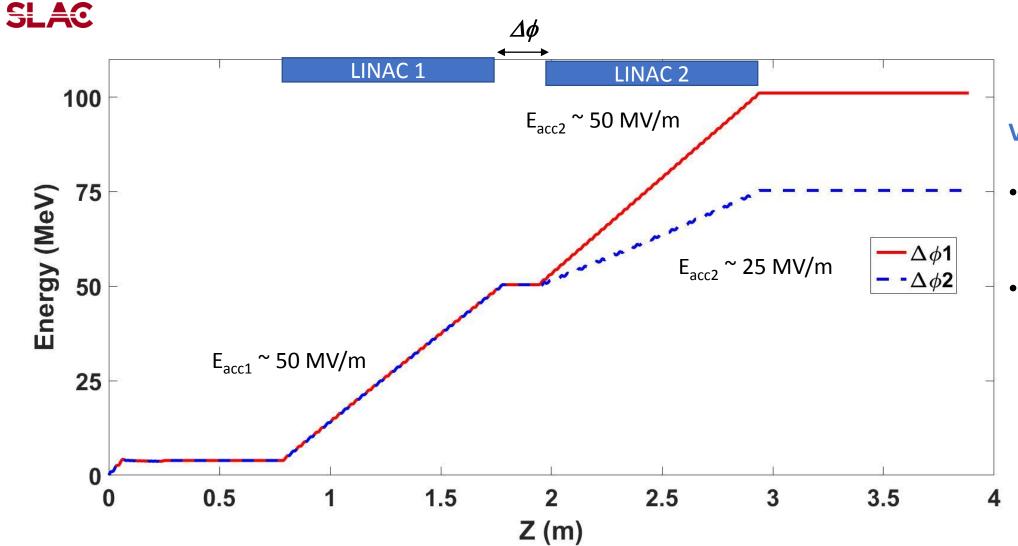
Optimized SW and TW sections in order to obtain Emax=120
MV/m at the cathode with < 20 MW RF input power;

• Operating Frequency 5.712 GHz.


Beam Dynamics Optimization

Input Parameters	Value
Beam Charge	250 pC
Sigma x (cut@1-sigma)	500 um
Laser Pulse Length	0.5 ps
E-field at cathode	120 MV/m
Peak Bz	0.27 T
Linac Gradient	50 MV/m
# particles	50,000

- Beam Dynamics simulation carried out with GPT;
- 1-m long distritributied-coupling linacs (S. Tantawi) at 50 MV/m;
- Emittance compensation and bunch compression, simultaneously;
- Beam spot focused down to about 200 μm rms;
- Beam peak current > 600 A;
- The unique beam envelope dynamics and the wake-field effects inside the hybrid photoinjector was also investigated with analytical methods (see Fabio Bosco's and Martina Carillo's presentations, respectively).


12th International Particle Accelerator Conference - IPAC'21, May 24-28, 2021

Multiple Energy Operation

Versatile system

- Multiple energy operation.
- Adjustment of Phase-shift between first and second linac e.m. fields.

SAPIENZA UC

Conclusions

- A new class of a hybrid (SW/TW) photoinjector in C-Band: extension and evolution for this new class of device.
- Optimized SW and TW sections in order to obtain 120 MV/m at the cathode with < 20 MW RF input power;
- Optimized beam dynamics shows 6D phase space compensation at 250 pC;
- Proper beam shaping at the cathode yields a 0.5 mm-mrad transverse emittance.
- A beam waist occurs simultaneously with a longitudinal focus of < 400 fs rms and peak current >600 A.
- Successfully investigated operation with two 50 MV/m linacs for an ICS source but can be used for FEL applications as well;
- Suitable for cryogenic operation → higher accelerating gradients;
- Work supported by DARPA GRIT under contract no. 20204571.

Thank you very much for your attention!