Design of a compact Ka-Band Mode Launcher for High gradient Accelerators

G. S. Mauro, G. Sorbello*, G. Torrisi, INFN-LNS, *also at UniCT, Catania, Italy
M. Behtouei, L. Faillace**, B. Spataro, A. Variola, I INFN-LNF, ** also at SBAI, UniRoma, Rome, Italy

M. Migliorati, (SBAI), UniRoma, Rome, Italy, INFN-Sezione Roma1, Roma, Italy
J. Rosenzweig, UCLA, Los Angeles, CA 90095, USA
V. Dolgashev, SLAC, Menlo Park, CA 94025, USA

Introduction and Motivation

- Strong demand for accelerating structures able to achieve higher gradients and more compact dimensions
[M. Behtouei et al; NIM A: 984, 2020, 164653, https://doi.org/10.1016/j.nima.2020.164653.]

- ultra-high gradient higher harmonic RF accelerating structure is needed for the linearization of the longitudinal phase space.

State of ART: SW Ka-Band linearizer

[M. Behtouei, L. Faillace, B. Spataro, A. Variola, M. Migliorati, "A SW Ka-Band linearizer structure with minimum surface electric field for the compact light XLS project", NIM A: 984, 2020, 164653, https://doi.org/10.1016/j.nima.2020.164653.]

Table 1
Parameters list for the cavity design.

Design parameters	
Frequency [GHz]	35.982
Average accelerating Electric Field [MV/m]	100
Axial length[cm]	8
Number of cells	20
Iris Aperture diameter [mm]	2
On-axis peak decelerating electric field $[\mathrm{MV} / \mathrm{m}]$	133
Ratio of phase to light velocity $\left(v_{\phi} / c\right)$	1
Pulse charge [pC]	75
Rms bunch length $\left(\sigma_{\tau}(f s)\right)$	350
Pulse repetition rate frequency $[\mathrm{Hz}]$	$1-10$

- preliminary RF design of a table-top Ka-Band LINAC operating at $\sim 35 \mathrm{GHz}$. $\sqrt{ }$
- Accelerating structure choice $\sqrt{ }$
- Accelerating structure design $\sqrt{ }$

Design of a compact Ka-Band Mode Launcher

This work is focused on: RF coupler design

Optimization of geometry in terms of

 reflection coefficient, field flatness, field azimuthal symmetry

- pulse length $\mathbf{5 0}$ ns repetition rate up to 100 Hz
- Ka-Band linear accelerator at very high accelerating gradients (above $\mathbf{1 0 0} \mathbf{~ M V / m}$).

RF Design: Geometry

The structure comprises four WR28 rectangular-TE10-to-circular-TM01 transitions

The total structure (19-cells) length is equal to 99.1926 mm.
[G. Torrisi, G. S. Mauro, G. Sorbello, G. Castorina, L. Celona, L. Faillace, B. Spataro and V. Dolgashev, (2020). RF design and experimental test of a quadrupole-free Xband TM 01 mode launcher. URSI Radio Science Bulletin. 22-27. 10.23919/URSIRSB.2020.9318433]

HFSS Simulations: Numerical Simulation

The numerical optimization has been performed in the case of iris radius $a=1 \mathrm{~mm}$ and $a=1.333 \mathrm{~mm}$.
9.5 cells with symmetry (19-cells)

Numerical Simulation

RESULTS: iris radius $a=1 \mathrm{~mm}$

Resonant Frequency $\mathrm{f}=35.98 \mathrm{GHz}$

Matching $\mathrm{S}_{11}<-30 \mathrm{~dB}$	
$\mathbf{~} \mathrm{f}=10 \mathrm{MHz}$	X

- Rc_coupling cell= 3.126 mm
- w_slot $=1 \mathrm{~mm}$
- h_slot $=0.533 \mathrm{~mm}$

RESULTS: iris radius $\boldsymbol{a}=1.333 \mathrm{~mm}$

Resonant Frequency $\mathrm{f}=35.98 \mathrm{GHz}$

- Rc_coupling cell= 3.103 mm
- w_slot= 1.3 mm
- h_slot= 1.24 mm

FLATNESS @ a = 1 mm

Electric field on axis at the
π-mode resonant frequency (HFSS simulations).

$\mathrm{G}=115 \mathrm{MV} / \mathrm{m}$

FLATNESS

FLATNESS from +-4\% (w/o last cell)
to $+-12 \%$ (with last cell)

Field flatness has to be improved by slightly reducing the end cells radius, and tuning.

Flatness @ $a=1.333 \mathrm{~mm}$

PROGRESS ON FLATNESS

[A SW Ka-Band linearizer structure with minimum surface electric field for the compact light XLS project
 M. Behtouei a,*, L. Faillace a, B. Spataro a, A. Variola a, M. Migliorati b. 1

[this Conf. Proceeding]

ComplexMag_E [V_per_meter]

RF PULSED HEATING STUDY

[B. Spataro, workshop in California @ SLAC]
a) Magnetic field magnitude

50 ns RF flat top
1 mm iris aperture radius
0.667 mm iris thickness

@ $132 \mathrm{MV} / \mathrm{m}$ the PH is about 13.6 Celsius degree for the elliptical iris against of 12 Celsius degree than the circular one.

The safety threshold is estimated to be about 50 Celsius degree (SLAC-CERN)

RF PULSED HEATING STUDY

[B. Spataro, workshop in California @ SLAC]

b) Modified Poynting Vector (MPV)
https://indico.cern.ch/event/948498/contr ibutions/3985617/attachments/2092926/ 3517033/Spataro Sw Kband Updates.pdf

50 ns RF flat top
1 mm iris aperture radius
0.667 mm iris thickness
@ $132 \mathrm{MV} / \mathrm{m}$ the MPV is $\mathbf{3} \mathrm{MW} / \mathrm{mm}^{\wedge} \mathbf{2}$ for elliptical iris against of $5 \mathrm{MW} / \mathrm{mm}^{\wedge} 2$ than the circular one.

RF PULSED HEATING STUDY

$$
\Delta T\left[{ }^{\circ} \mathrm{C}\right]=127\left|H_{\|}[\mathrm{MA} / \mathrm{m}]\right|^{2} \sqrt{f_{R F}[\mathrm{GHz}]} \sqrt{t[\mu \mathrm{~s}]}
$$

On the cell: \downarrow

- $\Delta \mathrm{T}=17.44^{\circ} \mathrm{C}$ for $a=1 \mathrm{~mm}$
- $\boldsymbol{\Delta T}=\mathbf{2 0 . 8 6}{ }^{\circ} \mathrm{C}$ for $a=1.333 \mathrm{~mm}$ V

On The Input coupler:

- $\Delta \mathbf{T}=76{ }^{\circ} \mathrm{C}$ for $a=1 \mathrm{~mm} \times$
- $\Delta \mathrm{T}=83.47^{\circ} \mathrm{C}$ for $a=1.333 \mathrm{~mm} \times$

> modified Poynting vector
> $\mathrm{S}_{\mathrm{c}}=3.78 \mathrm{MW} / \mathrm{mm}^{\wedge}$
> $@ 102 \mathrm{MV} / \mathrm{m}$

Harmonic Analysis Ka-band Coupler, a = 1.33 mm Discrete Fourier Coefficient

	M1	M2	M4	M8
1 port	$7.9305 \mathrm{e}-04$	$8.5099 \mathrm{e}-4$	$1.2041 \mathrm{e}-5$	$1.8054 \mathrm{e}-5$
2 ports	$2.2718 \mathrm{e}-18$	$2.6565 \mathrm{e}-4$	$5.1880 \mathrm{e}-5$	$2.9473 \mathrm{e}-7$
4 ports	$1.9052 \mathrm{e}-16$	$1.1989 \mathrm{e}-16$	0.0168	$4.6767 \mathrm{e}-4$

$$
V_{\mp}(r, \theta)=\int_{z_{\text {start }}}^{z_{e n d}} E_{z}(r, \theta, z) e^{\mp i k_{0} z} \mathrm{~d} z,
$$

$$
M_{\mp, s}(r)=\frac{1}{\sqrt{n}} \Sigma_{j=1}^{n} V_{\mp}\left(r, \theta_{j}\right) e^{2 \pi i(j-1) s / n}, \quad \begin{aligned}
& \left(\mathrm{r}=\mathrm{R}_{\mathrm{c}} / 8\right. \\
& \left.\mathbf{\theta}_{\mathbf{j}} \mathrm{ste}=5^{\circ}\right)
\end{aligned}
$$

Next steps

$$
B_{\phi}(r, \phi, z) \cong A_{0}(z) r+\sum_{n=1}^{\infty} A_{n}(z) \cos (n \phi) r^{n-1}
$$

- consider the quadrupole component of the magnetic field
- mechanical layout to simplify future manufacturing to reduce fabrication costs and reduce the probability of RF breakdown
- further optimization are needed to improve the flatness and reduce the pulse heating

Design of a compact Ka-Band Mode Launcher for High gradient Accelerators

THANK YOU!!

G. S. Mauro, G. Sorbello*, G. Torrisi, INFN-LNS, *also at UniCT, Catania, Italy
M. Behtouei, L. Faillace**, B. Spataro, A. Variola, । INFN-LNF, ** also at SBAI, UniRoma, Rome, Italy
M. Migliorati, (SBAI), UniRoma, Rome, Italy, INFN-Sezione Roma1, Roma, Italy
J. Rosenzweig, UCLA, Los Angeles, CA 90095, USA
V. Dolgashev, SLAC, Menlo Park, CA 94025, USA

