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Abstract
In current linear particle accelerators, the actual accel-

eration of the charged particles is realized with the help
of the electric field strength within driven radio frequency
resonators. The characterization and optimization of the
applied resonating structures can be reliably performed on
the basis of numerical simulation techniques. In the last
decades, efficient numerical methods have been introduced
to determine the electromagnetic fields in various structures.
Although the resonators are operated in a driven setup,

one of the advantageous numerical strategies is given here by
an eigendecomposition of the fields, which is realized by the
application of accurate eigenmode calculations together with
suitable post-processing steps. In particular, the extraction of
representative field maps used for particle tracking requires
an accurate numerical modeling of the fields at any position
inside the structure. In order to avoid numerically motivated
discontinuities of the fields, a proper smoothing algorithm
based on the vector equivalents of the Kirchhoff integral is
proposed.

INTRODUCTION
The calculation of eigenfields in closed resonating struc-

tures belongs to one of the standard tasks within particle
accelerator component design. In contrast to broadband
field excitations where a huge number of contributing modes
have to be considered, the classical eigenvalue calculation
is preferably applied to narrow-band applications with a
manageable number of modes. While the broadband case is
profitably treated in the time domain, the effects of narrow-
band excitations are advantageously processed with the help
of proper eigenvalue solvers.
Because of the complex geometrical shapes of the incor-

porated accelerating cavities, a precise analytical treatment
of the problem is impossible. An alternative is given by a
numerical approach where the designated introduction of
proper degrees of freedom enables to determine at least an
approximate solution. The ultimately achievable accuracy of
the numerically calculated eigensystem depends on the ap-
plied numerical method together with the provided number
of degrees of freedom.
The continuity of all field components especially in the

region where the charged particles are located naturally de-
pends on the chosen discretization scheme. In particular, the
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widespread finite element method (FEM) combined with
Whitney-type basis functions show unphysical, discontinu-
ous field components even in the vacuum part of the structure.
If the field is further evaluated on an unstructured tetrahedral
mesh, large axial field components can artificially couple to
transverse components, which further emphasizes the need
for a suppression of parasitic field components. This fun-
damental behavior can be observed also for various other
numerical methods such that a proper smoothing of the fields
is mandatory.

While generally any smoothing technique can be applied
to the calculated fields, a physically motivated variant based
on the Maxwell’s equations is favorable. The aim of the
smoothing is to reduce the numerically motivated discontinu-
ity of the electromagnetic field components without introduc-
ing parasitic charges into the computational domain. Among
the suitable methods, a vector equivalent of the Kirchhoff
integral is proposed here because of its simple applicability.
The smoothing effect is based here on the superposition of
individual spherical waves, which originate from the freely
selectable evaluation surface. A limited number of waves can
be considered for the reconstruction of the electromagnetic
fields if the required integration on the evaluation surface
is carried out by numerical means using a finite number of
collocation points.

NUMERICAL MODELING
A favorable numerical description of the underlying elec-

trodynamic eigenvalue problem is based on the Maxwell’s
equations in frequency domain

curl ®H = ®J + jω ®D (1a)

curl ®E = − jω ®B (1b)

div ®B = 0 (1c)

div ®D = % (1d)

where the symbols ®E and ®H are used to represent the elec-
tric and magnetic field strength. On account of the aimed
application, the corresponding electric and magnetic flux
density can be related to the electromagnetic field according
to linear, isotropic material relations which results in the
simple description ®D = ε0εr ®E and ®B = µ0µr ®H. The neces-
sary sources are described by the electric charge density %
together with the electric current density ®J while ω is used
to represent the angular frequency.
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In the following, we eliminate the dependency on the mag-
netic field and concentrate on a description of the electric
field only which allows to approximate the field distribution
by

®E(®r) =
N∑
i=1

xi ®ωi(®r) , ®r ∈ Ω . (2)

Usage of a tangentially continuous set of weighted Nédélec-
type basis functions ®ωi(®r) enables to evaluate the electro-
magnetic field in the entire computational domain Ω. Once
the weighting coefficients xi are collected in the complex-
valued vector x = (x1, . . . , xN ), the generalized nonlinear
eigenvalue problem

A(ω) x = ω2µ0ε0 B x (3)

is derived on an algebraic level employing Eq. (1) and Eq. (2)
while no sources have to be considered explicitly. Accord-
ing to the weighted residual procedure of the applied FEM,
the contributions to the stiffness matrix A as well as to the
mass matrix B are given in terms of integrals over the entire
computational domain Ω

Ai j =

∭
Ω

1
µr

curl ®ωi · curl ®ωj dΩ + losses (4a)

Bi j =

∭
Ω

εr ®ωi · ®ωj dΩ (4b)

with element-wise defined basis functions. To simplify the
computation, the matrices are assembled with respect to the
discretized volume only such that the integration can merely
concentrate on individual grid elements.
All possible loss mechanisms like surface losses or port

contributions are represented in the stiffness matrix to leave
the mass matrix untouched, such that the fundamental prop-
erty of a positive definite matrix B will be retained even in
the lossy case [1]. As a result, the stiffness matrix A will
depend on the frequency and a nonlinear problem emerge.
Solving the eigenvalue system specified in Eq. (3) enables to
evaluate the approximation given in Eq. (2) at any position
inside the computational domain Ω.

Kirchhoff Integral
For some particular applications, the numerical evalu-

ation of the electromagnetic field components within the
computational domain leads to an unwanted behavior. This
phenomenon can be particularly observed in a case, when
the sampling of the field is so high that multiple evaluation
points are located within a single computational element.
Moreover, the same situation takes place even for a coarse
sampling where field evaluation points are assigned to dis-
tinct computational elements. Here, an undesired numeri-
cally motivated coupling of strong field components from
one direction to the others can superimpose to real physi-
cal fields such that small field variations may be lost. In
such cases, a smoothing of the extracted field components
is advantageous to damp the undesired field variations to an
acceptable level.

One of the critical applications is given for example in the
area of accelerating radio frequency cavities where a precise
knowledge of the electromagnetic field is required for both
component characterization and beam dynamics studies. In
contrast to a multitude of smoothing algorithms where the
remaining field does not satisfy the Maxwell equations in
a specified domain, the application of physically motivated
variants can bypass this difficulty.

Among the promising techniques is the vector equivalent
of the Kirchhoff integral [2], which uses a large number of
spherical waves to represent the electromagnetic field inside
a given domain from the known equivalent values on the
corresponding closed surface. The evaluation area can be
chosen arbitrarily so that even a subset of the enveloping
surface of the computational domain can be considered. This
procedure with reduced efforts is profitable in case when
field evaluation points are limited to a given region where
the enveloping surface can be simplified significantly. This
is in particular the case, when field values near to the cavity
axis have to be extracted, as it is often the case for beam
dynamics studies.
The vector equivalents of the Kirchhoff integral can be

formulated for the electric field strength as well as for the
magnetic flux density. Both fields are required for subse-
quent particle dynamics investigations. In order to simplify
the notation, the profitable substitution ®B′ = jc ®B will be
used with c representing the speed of light in the homoge-
neous subregion. This notation enables to formulate the
integrals

®E =
∯

A

(
(®n × ®B′)kG −(®n× ®E)×∇G −(®n· ®E )∇G

)
dA (5a)

®B′=
∯

A

(
(®n × ®E)kG −(®n× ®B′)×∇G −(®n· ®B′)∇G

)
dA (5b)

in a symmetric way using ®n as the unit normal directed out of
the enclosed volume and k = ω

c to represent the propagation
constant. Special care has to be put on a proper evaluation
of the individual components because deviating definitions
especially of the direction of the unit normal but also of the
sign of the angular frequency in various publications lead to
deviating results. The important contribution is originating
from the Green’s function

G =
e−jkr

4πr
, r = |®rP − ®rQ | (6)

where the observation point ®rP ∈ Ω is located inside the
computational domain and the source point ®rQ ∈ A lies on
the chosen evaluation surface. According to Eq. (5), the
tangential as well as the normal component of the electric
field strength and the magnetic flux density are simultane-
ously required. We do not explicitly eliminate the mutual
dependency as it is performed within the boundary element
method for example but evaluate all necessary field compo-
nents from the known FEM solution in a post-processing
step. The ultimate smoothing is therefore automatically ob-
tained with the help of the stated Kirchhoff integrals.
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APPLICATION
A proper design of radio frequency accelerating cavities

requires the precise knowledge of the predominant electro-
magnetic fields inside a given structure. This information is
necessary for both beam dynamics and for characterization
of the investigated component itself. Concentrating on the
fundamental accelerating mode, any extraction of a corre-
sponding field can be obtained with the help of a suitable
numerical method, where an eigenmode calculation based
on the FEM is well established.
In the following, a TESLA 3.9GHz cavity [3] will be

examined as an illustrative classic example where special
focus is put on the correct modeling of the coaxial high-
power input coupler as well as the two attached higher-order
mode couplers (Fig.1).

Figure 1: Computational model of a 9−cell third-harmonic
TESLA 3.9GHz cavity including the coaxial high-power
input coupler as well as two higher-order mode couplers.

The actual cavity is built of high-purity niobium, which
reaches a superconducting state when cooled using liquid
helium. This condition allows to simplify the computational
model drastically because even the simple perfect electric
boundary condition can be applied without introducing too
much errors. Due to the attached couplers, only the coaxial
lines have to be modeled with the expensive port boundary
conditions. This procedure enables to correctly model the
intended energy extraction from the cavity, which naturally
influences the field distribution inside the structure and has
to be treated therefore with special care.

The FEM has been implemented with second order field
approximation on curved tetrahedral elements whereas the
CST Studio Suite [4] provides the required high-quality
mesh. The implementation is based on PETSc [5] with an in-
house realization of the Jacobi-Davidson eigenvalue solver
to enable an efficient solution of the underlying nonlinear
eigenvalue problem.
Once the desired eigenpair is found, the corresponding

electromagnetic field distribution can be evaluated with the
help of the approximation shown in Eq. (2) together with
Faraday’s law specified in Eq. (1b). The direct evaluation
of the FEM data for a mesh consisting of 4 464 452 curved
tetrahedral elements is shown in Figs. 2 and 3 in gray and
black color. Unphysical oscillations especially inside the
cavity region can be observed which are unsuited for further
processing steps.
A physically motivated smoothing process is given with

the vector equivalents of the Kirchhoff integral specified
in Eq. (5). A straightforward application of the given rela-
tions evaluated on a cylindrical envelope surface inside the
specified cavity enables to provide smooth data, which can
be immediately used for further analysis. For the specified
application the obtained field components are displayed in

Figure 2: Smoothed (unsmoothed in gray/black) distribution
of the electric field component Ex (red) together with the
scaled magnetic flux density cBy (blue) in V/m as a function
of the longitudinal position z in m along the cavity axis.

Figure 3: Smoothed (unsmoothed in gray/black) distribution
of the electric field component Ey (red) together with the
scaled magnetic flux density cBx (blue) in V/m as a function
of the longitudinal position z in m along the cavity axis.

Figs. 2 and 3 to support a direct comparison to the origi-
nal FEM data. A clear improvement of the quality of the
extracted electromagnetic field components is visible.

CONCLUSION
The vector equivalents of the Kirchhoff integral are suited

to smooth the electromagnetic field components of native
FEM data on a physical basis with the help of individual
spherical waves. The field continuity is sustained in domains
with homogeneous material distributions independent on the
original mesh-cell distribution.
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