MOPMR —  Poster Session   (09-May-16   16:00—18:00)
Paper Title Page
MOPMR001 Micro-mover Development and Test in the PAL-XFEL 229
 
  • B.G. Oh, J.H. Han, H. Heo, J.H. Hong, H.-S. Kang, C. Kim, D.E. Kim, K.-H. Park, Y.J. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Two micro-movers, which are able to control the horizontal, vertical and longitudinal positions as well as the yaw and pitch angles remotely, were developed and installed in the PAL-XFEL linac. The solenoid micro-mover in the gun section allows beam-based alignment of an electron beam to the solenoid field and the gun RF field. The X-band cavity micro-mover minimizes the transverse wake field effect caused by transverse misalignment between the beam and X-band cavity. Two micro-movers has similar specifications and the same mechanism, but the sizes are different from each other. In this paper, we present the design, manufacture and test results of the micro-movers.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR002 Bunch by Bunch Position Measurement and Analysis at PLS-II 232
 
  • J. Lee, M.-H. Chun, I. Hwang, D.T. Kim, G. Kim, T.-Y. Lee, D.C. Shin, S. Shinpresenter
    PAL, Pohang, Republic of Korea
 
  Beam dynamic phenomena described by bunch-by-bunch motion are important issues for a storage ring and are described by various theoretical formalisms. Direct measurements of the beam position related to different dynamical mechanisms are a useful information to accelerator optimization. In PLS-II, 20 GHz sampling oscilloscope synchronized with injection event (or triggered by beam loss signal) is used to measure direct bunch by bunch motion. Based on the measured data, the principal component analysis had been performed to get the insight into beam dynamic phenomena such as couple bunch instability and beam oscillation due to kicker leakage. In this paper, we will describe the measurement method and the result of analysis for coupled bunch instability.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR003 Electron Bunch Length Measurement Using Coherent Radiation Source of fs-THz accelerator at Pohang Accelerator Laboratory 235
SUPSS071   use link to see paper's listing under its alternate paper code  
 
  • J.H. Ko, I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • S.H. Jung, H.-S. Kang, I.S. Ko, J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  A Michelson interferometer was installed at the femtosecond (fs) terahertz (THz) Accelerator of Pohang Accelerator Laboratory(PAL) to measure a subpicosecond order electron bunch length. To measure an ultra-short electron bunch length, we use reconstruction process and fast fourier transform. Currently, we are generating THz radiation with the pulse energy of 7μJ by means of coherent transition radiation (CTR) from a 65-MeV electron beam of the fs-THz accelerator. In this paper, we show the how to make a longitudinal distribution of electron bunch and the radiation intensity difference between CTR and Coherent edge radiation (CER) for nondestructive electron bunch length measurement. And we report the measurement methods to get the fine electron bunch length information.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR008 Development of Beam Position Monitor for a Heavy-ion Linac of KHIMA 238
 
  • J.G. Hwang
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • G. Hahn, T.K. Yang
    KIRAMS, Seoul, Republic of Korea
 
  Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (no. NRF-2014M2C3A1029534).
The carbon and proton beams are produced by the electron cyclotron resonance ion source with the energy of 8 keV/u and it is accelerated up to 7 MeV/u by the RFQ and IH-DTL. The accelerated beam is injected on the synchrotron through the medium energy beam transport (MEBT). In the MEBT line of KHIMA, the stripline beam position monitor (BPM) is installed to measure the beam trajectory and orbit jitter before the beam injection at the synchrotron. It is also used to measure the phase information such as a bunch length for the de-buncher tuning in MEBT line. The BPM has the position resolution of 100 um with the diameter of 40 mm. The design study is performed and it is fabricated. In order to confirm the performance of the beam position monitor, the measurement of position accuracy and calibration by using wire test-bench, and the beam test with proton beam from MC-50 in KIRAMS are performed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR009 Development of Large Aperture Faraday-Cup for LEBT of KHIMA. 241
 
  • J.G. Hwang
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • T.K. Yang
    KIRAMS, Seoul, Republic of Korea
 
  Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (no. NRF-2014M2C3A1029534).
Since an aperture of a low energy beam transport line of the KHIMA is quite large, 100 mm, to minimize an uncontrolled beam loss, large aperture Faraday-cup with the diameter of 100 mm is installed to measure the beam current from the electron cyclotron resonance ion source (ECR-IS) and to identify the ion species using analyzing magnet. The suppression ring is designed to reduce the repelling electrons for an accurate measurement. The Faraday-cup has the cooling channel with the heat capability of 100 W to recover the heat from the ion beam for safety during the operation. In order to reduce the noise propagation from the cooling channel, the cooling channel is insulated with the cup. In this presentation, we show the physical modeling, mechanical aspect for design the large aperture Faraday-cup, and the result of in-beam test with the ECR-IS in KHIMA.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR010 The Development of Scintillating Screen Detector for Beam Monitoring at the KHIMA Project 244
 
  • S.Y. Noh, S.D. Chang, J.G. Hwang
    KIRAMS/KHIMA, Seoul, Republic of Korea
  • G. Hahn, T.K. Yang
    KIRAMS, Seoul, Republic of Korea
 
  Funding: NRF-2014M2C3A1029534
It is important to measure the beam propeties such as position, size and intensity, when we control the medical beam qualities, So we developed the scintillation screen monitor used for beam profile monitoring and it will be installed at High Energy Beam Transport(HEBT) section to measure the beam parameters. This system consists of a terbium-doped gadolinium oxysulfide(Gd2O2S:Tb) phosphor screen and high speed charge coupled device camera. The CCD camera has the maximum 90 frame rate and 659 X 494 pixel resolution. This Camera is mounted at distance of 260mm from the center of the scintillation screen and with the angle of 45 degree to the scintillation screen which is mounted at the angle of 45 degree to the beam axis. The image analysis program was written in National Instruments LabVIEW using IMAQ driver. To reduce the image processing time, we optimized the prcessing flow and used LabVIEW built-in function. To evaluate this system, we measured the beam size and center position of the beam at KIRAMS on 50MeV cyclotron. In this paper, we present the manufacture of beam profile system based on a scintillating screen monitor and the in-beam test results of it.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR012 Studies of Buffer Gas Cooling of Ion Beams in an RFQ Cooler and Their Transport to the EBIS Charge Breeder 248
SUPSS075   use link to see paper's listing under its alternate paper code  
 
  • K.H. Yoo, M. Chung
    UNIST, Ulsan, Republic of Korea
  • H.J. Son
    IBS, Daejeon, Republic of Korea
 
  In rare isotope accelerator facilities, an RFQ cooler is often used to manipulate ions. The RFQ cooler is a de-vice to effectively cool and confine ions in gaseous envi-ronment. The RFQ cooler provides a radial electric force to the beam by applying RF voltages to the quadrupole electrode structures, and axial force by applying different DC voltages to the segmented electrodes. The ions are trapped inside the potential well of the RFQ cooler formed by the DC fields, so that they have more colli-sions with the buffer gas. Several important parameters such as transverse emittance can be improved when ion beams are extracted from the RFQ cooler. In order to design an efficient RFQ cooler, which can properly match the ion beams into the EBIS charge breeder, it is essential to analyze evolutions of the transverse emittance and transmission efficiency through the RFQ cooler. Moreo-ver, to minimize emittance growth and maximize trans-mission efficiency, the beam transport line to the EBIS charge breeder needs to be optimized. In this work, we study the methods to apply the mechanism of buffer gas cooling in RFQ cooler to G4beamline and the beam transport line to EBIS charge breeder to TRACK.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR013 Development, Calibration and Application of New-generation Dissectors with Picosecond Temporal Resolution 251
 
  • O.I. Meshkov, O. Anchugov, V.L. Dorohov, G.Y. Kurkin, A.V. Petrozhitskii, D.A. Shvedov, E.I. Zinin
    BINP SB RAS, Novosibirsk, Russia
  • P.B. Gornostaev, M.Ya. Schelev, E.V. Shashkov, A. V. Smirnov, A.I. Zarovskii
    GPI, Moscow, Russia
 
  Funding: The presented experimental results were implemented due to financial support of the Russian Science Foundation (Projects N 14-29-00295)
A dissector is an electron-optical device designed for measurement of periodic light pulses of subnanosecond and picosecond duration. LI-602 dissector developed at BINP is widely used for routine measurements of a longitudinal profile of electron and positron beams at BINP electron-positron colliders and other similar installations]. This dissector is a part of many optical diagnostic systems and provides temporal resolution of about 20 ps. Recently* a new generation of picosecond dissectors were created on the basis of the PIF-01/S1 picosecond streak-image tube designed and manufactured at the General Physics Institute Photoelectronics Department (Moscow). The device has demonstrated a temporal resolution of 3-4 ps (FWHM). The procedure of temporal resolution calibration and results of application of the new-generation picosecond dissector are given in this work.
*E.I. Zinin, O.I. Meshkov. JINST, 2015 1748-0221 10 P10024 doi:10.1088/1748-0221/10/10/P10024
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR014 Beam Diagnostics Overview for Collector Ring at FAIR 255
 
  • Yu. A. Rogovsky, E.A. Bekhtenev, M.I. Bryzgunov, O.I. Meshkovpresenter, D.B. Shwartz
    BINP SB RAS, Novosibirsk, Russia
  • E.A. Bekhtenev, Yu. A. Rogovsky, D.B. Shwartz
    NSU, Novosibirsk, Russia
  • O. Chorniy
    GSI, Darmstadt, Germany
 
  The Collector Ring (CR) is a dedicated storage ring in the FAIR project, where the main emphasis is laid on the effective stochastic precooling of intense secondary beams of stable ions, rare isotopes or antiprotons. A complex operation scheme with several types of operational cycles with beams in CR starting from injection, RF gymnastics, stochastic cooling then, and finishing to extraction is foreseen. Beam parameters changes significantly during the cycles. This demands an exceptional high dynamic range for the beam instrumentation. Non-destructive methods are mandatory for high currents as well as for the low current secondary beams due to the low repetition rate. Precise measurements of all beam parameters and automatic steering with short response time are required due to the necessary exploitation of the full ring acceptances. An overview of the challenges and solutions for various diagnostic installations will be given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR015 Optical Fibers as a Tool for Gamma Beam Diagnostics at Medical Electron Accelerators 258
 
  • A.I. Novokshonov, V.I. Bespalov, A. Potylitsyn, D.A. Shkitovpresenter, S.R. Uglov, A.V. Vukolov
    TPU, Tomsk, Russia
 
  Funding: This work was partially supported by the Russian Ministry of Education and Science within the program "Nauka" Grant № 3.709.2014/K.
The existing techniques for gamma beam diagnostics at medical accelerators based on X-ray films have several disadvantages such as insufficient spatial resolution, difficult realization and off-line mode. In the works*,** a feasibility of Cherenkov radiation (CR) in glass fibers for charged particle beam diagnostics was demonstrated. An application of glass fibers scanning for gamma beam diagnostics may have a lot advantages including a possibility of on-line measurements. For this goal we used optical fiber with 0.6 mm diameter and length up to 10 m. An efficiency of CR generation in such fibers and signal attenuation in a long fiber were investigated using the Tomsk microtron electron beam. The shape of gamma beam field produced by the medical SL-75-5MT 6 MeV electron accelerator was measured using the proposed technique. It is shown there it is possible to measure not only gamma beam spatial distribution, but also its angular distribution.
* Wulf, F. and Korfer, M. 2009 Proc. DIPAC2009 411.
** Murokh, A., Agustsson, R., Boucher, S., Frigola, P., Hodgetts, T., Ovodenko, A., Ruelas, M. and Tikhoplav, R. 2012 Proc. IPAC2012 996.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR016 A New Approach for the Electron Beam Diagnostic Using Diffraction Radiation Disphase Target 261
 
  • D.A. Shkitov, G.A. Naumenko, A. Potylitsyn
    TPU, Tomsk, Russia
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: The work was partially supported by the RFBR grant No 15-52-50028.
Since 1995, when the diffraction radiation (DR) from relativistic particles was first observed*, the development of new approaches using the DR for charged particle beam diagnostics is continued. The DR appears when charged particle moves close to the media and the electromagnetic field interacts with it. A rather well-known non-invasive diagnostic method of transversal bunch size is to use a slit target**. In paper*** the optical DR from disphase target was proposed to use for non-invasive diagnostics of high energy electron beam. Disphase target consists of the two rectangular flat plates inclined with respect to each other at an angle compared with 1/g, where g is the Lorentz-factor. Recently the feasibility of the disphase target usage for the 6 MeV electron beam size diagnostics was investigated****. In this report we present the further research of the disphase target beam diagnostics. The simulations of the spectral-angular DR characteristics from this target and it application for diagnostics aim are shown. These calculations confirm an applicability of this technique for micron size beam measurements for the case of g>1000.
*Y. Shibata et al. //PRE 52, 6787 (1995)
**P. Karataev et al. //PRL 93, 244802 (2004)
***G. Naumenko et al. //Proc. of PAC TOAD004, 404 (2005)
****E.V. Kornoukhova et al. //JPCS, in press (2016)
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR017 Design and Simulations of the Cavity BPM Readout Electronics for the ELI-NP Gamma Beam System 264
 
  • M. Cargnelutti, B.B. Baricevic
    I-Tech, Solkan, Slovenia
  • A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • S. Pioli, M. Serio, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
 
  The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility will provide a high intensity laser and a very intense gamma beam which will be used in a broad range of experiments. The gamma beam is obtained through incoherent Compton back-scattering of a laser light off a high brightness electron beam provided by a 700MeV warm LINAC. Electrons are accelerated in trains with up to 32 bunches, each one separated by 16ns. In the laser-electron interaction region, every bunch needs to be monitored with a resolution below 1μm RMS. To achieve this performance, a low-Q cavity beam position monitor will be used in combination with a dedicated data acquisition system able to perform bunch-by-bunch beam position measurements with sub-μm resolution. Using fast A/D converters and specific digital filtering, the readout system proposes an alternative measurement concept. The requirements of the system, its design and the results from the simulations will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR018 Beam Position Monitor for Circular Proton Accelerators 267
 
  • M. Žnidarčič, E. Janezicpresenter
    I-Tech, Solkan, Slovenia
  • K. Lang
    GSI, Darmstadt, Germany
 
  Position monitoring, tune calculation and subsequent optimization of hadron circular accelerators requires specific instrumentation. Libera Hadron is the newly developed instrument intended for data acquisition and post processing of signals from shoe-box or capacitive type pickups. Development, initial measurements and verification of the instrument performance were conducted in the Instrumentation Technologies' laboratories, followed by the characterization measurements of the unit carried out at Facility for Anti-proton and Ion Research (FAIR) facility. This article discusses the new BPM electronics concept, the tests performed and the performance obtained.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR019 Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3 270
 
  • A. Benot-Morell, A. Faus-Golfepresenter
    IFIC, Valencia, Spain
  • A. Benot-Morell, M. Wendt
    CERN, Geneva, Switzerland
  • A. Faus-Golfepresenter
    LAL, Orsay, France
  • J.M. Nappa, S. Vilalte
    IN2P3-LAPP, Annecy-le-Vieux, France
 
  Funding: MINECO contract no. FPA2013-47883-C2-1-P. CLIC Collaboration Agreement, contract no. KE2638/BE. FNRA contract no. ANR-11-IDEX-0003-02.
In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR020 Beam Diagnostics for ESS Commissioning and Early Operation 273
 
  • A. Jansson, M. Eshraqi, S. Molloy
    ESS, Lund, Sweden
 
  The ESS linac design has evolved over time and is now quite stable. Recently, there has been a focused effort on developing more detailed installation and commissioning plan, and related to this, the plans for diagnostics has also been reviewed. This paper presents the updated diagnos-tics suite. Many of diagnostics systems will be developed by in-kind partners across Europe.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR021 Lifetime and Operational Criteria of Proton Beam Instrumentation in the ESS Target Station 276
 
  • Y. Lee, T.J. Shea, C.A. Thomas
    ESS, Lund, Sweden
 
  At the European Spallation Source, a 2 GeV, 5 MW proton beam will be delivered from a superconducting linear accelerator to target at a 4% duty factor, which poses demanding requirements on target station design. To tune the beam delivery system and to protect the target station components, the current density, the halo distribution, and the position of the proton beam shall be measured. To provide this functionality, a suite of beam monitoring devices will be deployed in the target monolith, including a multi-wire grid for the beam profile monitoring, thermo-couple assemblies and secondary emission blades for aperture monitoring, and a beam footprint imaging system consisting of optical components and luminescent coatings. Since these devices are exposed to particles that deposit energy and cause a high rate of radiation damage, it is a significant challenge to ensure full functionality. In this paper, material selection, lifetime estimates and operational criteria for these beam-monitoring devices are presented. A number of particle transport and finite-element simulations are performed for analyses, and an empirical validation plan is presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR022 Beam-based Alignment of CLIC Accelerating Structures Utilizing Their Octupole Component 280
 
  • J. Ögren, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Alignment of the accelerating structures is essential for emittance preservation in long linear accelerators such as the Compact Linear Collider (CLIC). The prototype structures for CLIC have four radial waveguides connected to each cell for damping wakefields and this four-fold symmetry is responsible for an octupole component of the radio-frequency fields, phase-shifted 90 degrees with respect to the accelerating mode. The octupole field causes a nonlinear dependence of the transverse beam deflection with respect to the position within the accelerating structure. By transversely moving the beam with two upstream steering magnets, and observing the deflection with beam position monitors or screens, the electromagnetic center of the structure can be found. We discuss the applicability of this method for aligning the beam in the accelerating structures.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR023 Surface Characterization and Field Emission Measurements of Copper Samples inside a Scanning Electron Microscope 283
 
  • J. Ögren, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • S.H.M. Jafri, K. Leifer
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
 
  Vacuum breakdown in normal-conducting accelerating structures is a limiting factor for high gradient acceleration. Many aspects of the physics governing the breakdown process and its onset are yet to be fully understood. At Uppsala University we address these questions with an in-situ experimental setup mounted in an environmental scanning electron microscope. It consists of a piezo motor driven tungsten needle and a sample surface mounted on a piezo stage, allowing for nano-meter 3D-position control. One of the piezo motors controls the needle-sample gap while the two other scan across the surface. A DC-voltage up to 1 kV is applied across the gap and field emission currents from a copper surface are measured with an electrometer. Here we present the setup and some initial results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR024 A Versatile Beam Loss Monitoring System for CLIC 286
SUPSS070   use link to see paper's listing under its alternate paper code  
 
  • M. Kastriotou, S. Döbert, W. Farabolini, E.B. Holzer, E. Nebot Del Busto, F. Tecker
    CERN, Geneva, Switzerland
  • M. Kastriotou, E. Nebot Del Busto, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Kastriotou, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to quantify the position resolution of optical fibre BLMs in a multi-bunch, multi-loss scenario as well as the sensitivity limitations due to crosstalk and electron field emission.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR025 Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation 290
 
  • M. Hostettler, G. Papottipresenter
    CERN, Geneva, Switzerland
  • M. Hostettler
    LHEP, Bern, Switzerland
 
  As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR026 Beam Instrumentation Performance during Commissioning of CERN's Linac-4 to 50 MeV and 100 MeV 293
 
  • U. Raich, T. Hofmann, F. Roncarolo
    CERN, Geneva, Switzerland
 
  Linac-4, a 140 MeV H-linear accelerator is designed to replace the aging 50 MeV proton Linac. It will consist of an H-source and 45 keV LEBT, an RFQ and 3 MeV MEBT with a chopper, 3 drift tube linac (DTL) tanks accelerating the beam to 12, 30 and 50 Mev, cavity coupled structures (CCDTL) accelerating it to 100 MeV and a pi mode structure bringing it to its design energy of 160 MeV. This paper reports on the commissioning of the DTL and CCDTL with 2 dedicated temporary measurement lines, the first one adapted to the 12 MeV beam while the second one is dedicated to characterize the 50 MeV and the 100 MeV beams. The beam diagnostic devices used in these lines is described as well as results obtained.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR027 Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements 296
SUPSS073   use link to see paper's listing under its alternate paper code  
 
  • M.N. Rihl, A. Alexopoulos, V. Baglin, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, C. Gaspar, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, N.J. Jurado, V. Kain, M. Kuhn, B. Luthi, P. Magagnin, R. Matev, N. Neufeld, J. Panman, V. Salustino Guimaraes, B. Salvant, R. Veness, S. Vlachos
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, G.J. Haefeli, P. Hopchev, T. Nakada, B. Rakotomiaramanana, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, G. Schwering, M. Wlochal, A. von Dratzig
    RWTH, Aachen, Germany
 
  Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.
* LHCb collaboration, Journal of Instrumentation, 9, P12005
** P. Hopchev in Proc. of IPAC 2014, June 15-20, 2014, Dresden Germany
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR028 Emittance Characterisation of High Brightness Beams in the CERN PS 299
 
  • G. Sterbini, J.F. Comblin, V. Forte, A. Guerrero, E. Piselli
    CERN, Geneva, Switzerland
  • V. Forte
    Université Blaise Pascal, Clermont-Ferrand, France
 
  Measurements in the CERN Proton Synchrotron showed that achieving the required accuracy for the emittance characterisation of high brightness beams is challenging. Some of the present limits can be related to systematic errors in the wire scanner calibration or, for the horizontal emittance determination, in the assumptions adopted while deconvoluting the contribution of the longitudinal plane from the measured transverse profile. We present in this paper the results of a beam-based test of the wire scanner calibration and of a general numerical deconvolution algorithm to compute the betatronic profile starting from the measured ones. In addition to the bunch train average emittance, a bunch-by-bunch transverse emittance measurement would increase the potential to understand, optimise and monitor the beam performance. In 2015 the first PS bunch-by-bunch measurement chain was setup. The results are reported and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR029 Experience with DOROS BPMs for Coupling Measurement and Correction 303
 
  • T. Persson, J.M. Coello de Portugalpresenter, A. Garcia-Tabares, M. Gąsior, A. Langner, T. Lefèvre, E.H. Maclean, L. Malina, J. Olexa, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
  • J. Olexa
    STU, Bratislava, Slovak Republic
 
  The Diode ORbit and OScillation System (DOROS) system is designed to provide accurate measurements of the beam position in the LHC. The oscillation part of the system, which is able to provide turn-by-turn data, is used to measure the transverse coupling. Since the system provides high resolution measurements for many turns only small excitations are needed to accurately measure the transverse coupling. In this article we present the performance the system to measure coupling and compare it to the BPMs not equipped with this system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR030 Performance of the Upgraded Synchrotron Radiation Diagnostics at the LHC 306
 
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  During the LHC long shut down in 2014, the transverse beam size diagnostics based on synchrotron radiation was upgraded in order to cope with the increase of the LHC beam energy to 6.5 TeV. The wavelength used for imaging was shifted to near ultra-violet to reduce the contribution of diffraction to the system resolution, while in parallel, a new diagnostic system based on double slit interferometry was installed to measure the beam size by studying the spatial coherence of the emitted synchrotron radiation. This method has never been implemented before in a proton machine. A Hartmann mask was also installed to identify possible wavefront distortions that could affect the system accuracy. This paper will focus on the comparison of visible and the near ultra-violet imaging and on the first experience with interferometry.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR031 Investigation of Injection Losses at the Large Hadron Collider with Diamond Based Particle Detectors 310
 
  • O. Stein, W. Bartmann, F. Burkart, B. Dehning, V. Kain, R. Schmidt, D. Wollmannpresenter
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  During the operation of the Large Hadron Collider (LHC) in 2015, increased injection losses were observed. To minimize stress on accelerator components in the injection regions of the LHC and to guarantee an efficient operation these losses needed to be understood and possible mitigation techniques should be studied. Measurements with diamond particle detectors revealed the loss structure with ns-resolution for the first time. Based on these measurements, recaptured beam from the Super Proton Synchrotron (SPS) surrounding the nominal bunch train was identified as the major contributor to the injection loss signals. Methods to reduce the recaptured beam in the SPS were successfully tested and verified with the diamond particle detectors. In this paper the detection and classification of LHC injection losses are described. The methods to reduce these losses and verification measurements are presented and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR032 Measurement of Beam Size with a SR Interferometer in TPS 313
 
  • M.L. Chen, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, W.Y. Laipresenter, C.J. Lin, S.Y. Perng, C.W. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) has operated since 2015. An optical diagnostic beamline is constructed in section 40 of TPS for the diagnosis of the properties of the electron beam. One instrument at this beamline is a synchrotron radiation interferometer (SRI), which is operated to monitor the beam size. In this paper, we present the beamline structure and recent results of measurement with the SR interferometer.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR033 Characterization of Beam Properties Using Synchrotron Light at Taiwan Photon Source 316
 
  • C.Y. Liao, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.-C. Kuo, H.-J. Tsai, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a third-generation 3-GeV synchrotron light facility, located in National Synchrotron Radiation Research Center (NSRRC) at Hsinchu Science Park. After overcoming many challenges, the storage beam current attained 520 mA in 2015 December. The synchrotron light monitors, including X-ray and visible light, are important diagnostic tools to characterize the various machine conditions. The booster beam dynamics during ramping and the beam properties of the storage ring were studied with synchrotron light. The results of measurements are presented in this report.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR034 Precise Betastron Tune Measurement in TPS Storage Ring 319
 
  • C.H. Chen, C.H. Chang, J.Y. Chen, M.-S. Chiu, S. Fann, C.H. Huang, T.Y. Lee, C.C. Liang, Y.-C. Liu, F.H. Tsengpresenter
    NSRRC, Hsinchu, Taiwan
 
  To acquire precise beam orbits from beam position monitors (BPMs) in storage ring is one of the most significant diagnosis to measure beam parameters. However, the precise spectrum analyses from BPM data acquisitions such as betatron tune, dynamics aperture and frequency map '..etc. that are depended on more accurate discrete Fourier transform (DFT) or the fast Fourier transform (FFT). A method of the fast Fourier transform correction (FFTc) was employed for the more accurate spectrum measurement in Taiwan Photon Source (TPS). We perform the accuracy and error analyses of this method from some spectral lines in two window functions. And the precise spectrum for betatron tune measurements and related results will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR035 Bunch Length Measurements using a Transverse Deflecting Cavity on VELA 323
 
  • J.W. McKenzie, S.R. Buckley, L.S. Cowie, P. Goudket, M. Jenkins, B.L. Militsyn, A.J. Moss, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  The VELA facility at Daresbury Laboratory in the UK includes a 5 MeV/c 2.5 cell S-band photoinjector gun. This gun operates in the "blow-out" regime with a sub-200 fs length drive laser: the resulting bunch length is determined by space-charge effects. We present measurements made with an S-band transverse deflecting cavity to characterise the bunch length as a function of charge, and as a function of the gun operating phase.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR036 Using a Single Shot Spectrometer to Determine the Spectral Characteristics of the Beam as a Result of Micro-bunching Instabilities 327
SUPSS068   use link to see paper's listing under its alternate paper code  
 
  • A. Finn, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  A single shot spectrometer has been designed and is in operation at the Diamond Light Source (DLS). It is an array of eight Schottky barrier diodes (SBDs) each with a distinct frequency band covering 33-1000 GHz. The aim of the spectrometer is to observe the bursts of coherent synchrotron radiation (CSR) as a result of micro-bunching instabilities (MBI) and stable low alpha modes, where alpha is the momentum compaction factor. In this case, the bursts of CSR occur with wavelengths in the mm regime. SBDs are often implemented as detectors in the millimetre wavelength range and benefit from low noise, excellent sensitivity and ultra-fast responses. The eight SBDs have been individually characterised thus making the results obtained comparable to simulations. Here we present, an analysis of the data obtained via the spectrometer in particular, the bursting nature and spectral characteristics of a sample of beam modes at DLS. Furthermore, the results obtained can be used to confirm simulations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR037 Analysis of Asymmetry Tolerances and Cross-coupling in Cavity BPMs 331
 
  • E. Yamakawa, S.T. Boogert, A. Lyapin, L.J. Nevaypresenter
    JAI, Egham, Surrey, United Kingdom
  • S. Syme
    FMB Oxford, Oxford, United Kingdom
 
  Geometric asymmetries in cavity BPMs result in a coupling between horizontal and vertical signals, which complicates their usage and may affect both the dynamic range and spatial resolution of the system in both directions. Tolerances to several types of geometric asymmetries have been analysed using a 3D electromagnetic field solver (GdfidL). We report on some of the results and discussed the possible impact of the considered geometrical distortions.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR038 Design and Simulation Studies of the Novel Beam Arrival Monitor Pickup at Daresbury Laboratory 334
 
  • A. Kalinin, S.P. Jamison, T.T. Thakker
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Apsimonpresenter, G. Burt, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  We present the novel beam arrival monitor pickup design currently under construction at Daresbury Laboratory, Warrington, UK. The pickup consists of four flat electrodes in a transverse gap. CST Particle Studio simulations have been undertaken for the new pickup design as well as a pickup design from DESY, which is used as a reference for comparison. Simulation results have highlighted two advantages of the new pickup design over the DESY design; the signal bandwidth is 25 GHz, which is half that of the DESY design and the response slope is a factor of 1.6 greater. We discuss optimisation studies of the design parameters in order to maximise the response slope for bandwidths up to 50 GHz and present the final design of the pickup.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR039 Review of Emittance Diagnostics for Space Charge Dominated Beams for AWAKE e- Injector 337
 
  • O. Mete Apsimon, G.X. Xia
    UMAN, Manchester, United Kingdom
  • S. Döbert
    CERN, Geneva, Switzerland
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the Cockcroft Institute Core Grant and STFC.
For a low energy, high intensity beam, total beam emittance is dominated by defocusing space charge force. This is most commonly observed in photo-injectors. In this low energy regime, emittance measurement techniques such as quadrupole scans fail as they consider the beam size only depends on optical functions. The pepper-pot method is used for 2D emittance measurements in a single shot manner. In order to measure the beam emittance in space charge dominated regime by quadrupole scans, space charge term should be carefully incorporated into the transfer matrices. On the other hand, methods such as divergence interferometry via optical transition radiation (OTRI), phase space tomography using 1D projections of quadrupole scans can be suitably applied for such conditions. In this paper, the design of a versatile pepper-pot system for AWAKE experiment at CERN is presented for a wide range of bunch charges from 0.1 to 1nC where the space charge force increases significantly. In addition, other aforementioned methods and respective algorithms are introduced as alternative methods.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR040 First Steps Towards a Single-Shot Longitudinal Profile Monitor: Study of the Properties of Coherent Smith-Purcell Radiation Using the Surface Current Model 340
SUPSS069   use link to see paper's listing under its alternate paper code  
 
  • H. Harrison, G. Doucas, I.V. Konoplev, A.J. Lancaster
    JAI, Oxford, United Kingdom
  • A. Aryshev, K. Lekomtsev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: UK STFC, Leverhulme Trust, Photon and Quantum Basic Research Coordinated Development Program (Ministry of Education, Culture, Sports, Science and Technology, Japan)and JSPS KAKENHI.
We propose to use the polarization of coherent Smith-Purcell radiation (cSPr) to separate the signal from background radiation in a single-shot longitudinal bunch profile monitor. We compare simulation and experimental results for the degree of polarization of cSPr generated by a grating with a 1mm periodic structure at the LUCX facility, KEK (Japan). Both experiment and simulation show that the majority of the cSPr signal is polarized in the direction parallel to the grating grooves. The degree of polarization predicted by simulation is higher than the measured result, therefore further investigation is needed to resolve this discrepancy.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR041 Experimental and Theoretical Studies of the Properties of Coherent Smith-Purcell Radiation 344
 
  • F. Bakkali Taheri, R. Bartolini, G. Doucas, I.V. Konoplev, A. Reichold
    JAI, Oxford, United Kingdom
  • J. Barros, N. Delerue
    LAL, Orsay, France
  • R. Bartolini
    DLS, Oxfordshire, United Kingdom
  • C.I. Clarke
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported (in parts) by the UK Science and Technology Facilities Council (STFC UK) through grant ST/M003590/1 and The Leverhulme Trust through the International Network Grant IN-2015-012
Previous studies have demonstrated that coherent Smith-Purcell radiation (cSPr) can be used for relativistic electron bunch time profile reconstruction at pico-second and femtosecond scales. The E203 experiments undertaken in May 2015 at FACET (SLAC) were dedicated to the study of some properties of cSPr, namely the azimuthal distribution and the polarization of the radiation. The experimental set up description which allowed such studies will be presented along with the results. To understand the experimental data both semi-analytical and numerical models were studied. The semi-analytical approach was based on the surface-current model, and the 3D particle-in-cell code VSim was used for numerical modeling. The experimental and theoretical studies are compared.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR043 Optical System Design for The ESS Proton Beam and Target Diagnostics 347
 
  • M.G. Ibison, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Adli, H. Gjersdal
    University of Oslo, Oslo, Norway
  • M.G. Ibison, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • T.J. Shea, C.A. Thomas, N. de la Cour
    ESS, Lund, Sweden
 
  Funding: Science and Technology Facilities Council
The high power and low emittance of the European Spallation Source (ESS) proton beam require a robust protection strategy for the spallation target and its surroundings. For this, the beam will be imaged on passing through scintillator screens coating both the proton beam window (PBW) on exit from the accelerator, and the entry window to the target (TW). Light from the screens must be transported to remote cameras through a 4m high shielding plug of limited aperture. At the same time, the optical path must not compromise the integrity of the shield against neutrons and interaction products. We present the theory underlying the design of the reflective optics for efficient transmission of high-quality images to provide the desired level of protection to the machine, and describe its implementation in the Zemax software tool, as well as the predicted imaging performance. We also consider how the requirements of environment (thermal and radiation), initial alignment and ongoing maintenance for the optical system will be met. Finally we comment on the applicability of optics of this type for diagnostic systems in similar situations at other neutron sources and elsewhere.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR044 Optimization of Particle Accelerators (oPAC) 350
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485.
The optimization of the performance of any particle accelerator critically depends on an in-depth understanding of the beam dynamics, powerful simulation tools and beam diagnostics, as well as a control and data acquisition system that links all the above. The oPAC consortium has carried out collaborative research into these areas, with the aim to optimize the performance of present and future accelerators that lie at the heart of many research infrastructures. The network brought together research centers, universities, and industry partners to jointly train 23 researchers in this interdisciplinary field. This contribution presents selected research highlights from the network's scientific work packages: results from beam dynamics simulations into upgrade scenarios for the LHC and the 3rd generation light sources ALBA and SOLEIL; use of a cryogenic current comparator for low intensity ion beams; advanced beam loss monitors operating in cryogenic environments; and a laser-wire beam profile monitor for H beams. Finally, it discusses how an open source control system based on a relational database using a dynamic library loader can help enhance overall facility operation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR045 High Resolution and Dynamic Range Characterisation of Beam Imaging Systems 354
 
  • C.P. Welsch, R.B. Fiorito, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Bergamaschi, R. Kieffer, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev, K.O. Kruchinin
    JAI, Egham, Surrey, United Kingdom
 
  Funding: Work supported by the EU under grant agreement 624890 and the STFC Cockcroft Institute core grant ST/G008248/1.
Any imaging system requires the use of various optical components to transfer the light from the source, e.g. optical radiation generated by a charged particle beam, to the sensor. The impact of the transfer optics on the image resolution is often not well known. To improve this situation, the point spread function (PSF) of the optical system must be measured, preferably, with high dynamic range. For this purpose we have created an intense, small (~ 1 μm) point source using a high quality laser and special focusing optics; and introduced a digital micro-mirror array in the optical system to substantially increase its dynamic range. The PSFs of optical systems that are currently being developed for high resolution, high dynamic range beam imaging using optical transition and diffraction radiation are measured and compared to Zemax simulations. The goal of these studies is to systematically understand and mitigate any ill effects on the PSF due to aberrations, diffraction and misalignment of the components of the imaging system. We present the results of our measurements and simulations.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR046 Characterizing Supersonic Gas Jet-based Beam Profile Monitors 357
 
  • H.D. Zhang, A.S. Alexandrova, A. Jeff, V. Tzoganis, C.P. Welschpresenter
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.S. Alexandrova, A. Jeff, V. Tzoganis, C.P. Welschpresenter, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • A. Jeff
    CERN, Geneva, Switzerland
 
  Funding: Work supported by EU under contracts 215080 and 289191, Helmholtz Association (VH-NG-328) and STFC under the Cockcroft Institute core grant ST/G008248/1.
The next generation of high power, high intensity accelerators requires non-invasive diagnostics, particularly beam profile monitors. Residual gas-based diagnostics such as ionization beam profile or beam induced fluorescence monitors have been used to replace commonly used scintillating screens. At the Cockcroft Institute an alternative technique using a supersonic gas jet, shaped into a 45o curtain screen, was developed. It has already demonstrated its superior performance in terms of resolution and signal-to-noise ratio in comparison with residual gas monitors in experimental studies. The performance of this type of monitor depends on the achievable jet homogeneity and quality. Using a movable vacuum gauge as a scanner, the dynamic characteristics of the jet are studied. In this paper we also give an analysis of the resolution for this monitor in detail from the theory and ion drift simulation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR048 Emittance Measurements and Operation Optimization for ECR Ion Sources 361
 
  • V. Tzoganis, C.P. Welschpresenter
    The University of Liverpool, Liverpool, United Kingdom
  • O. Kamigaito, T. Nagatomo, T. Nakagawa, V. Tzoganis
    RIKEN Nishina Center, Wako, Japan
  • V. Tzoganis, C.P. Welschpresenter
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: RIKEN IPA scheme and Cockcroft Institute Core Grant
Electron Cyclotron Resonance (ECR) ion sources supply a broad range of ions for post acceleration in cyclotrons. Here, an effort to improve the beam transfer from RIKEN's 18 GHz ECR ion source to the Low Energy Beam Transfer (LEBT) line and an optimization of the performance of the ion source is presented. Simulation studies have shown that less than 20% of the beam is currently transferred. The first goal is to measure the transverse beam emittance in real time. The emittance monitor designed and fabricated for this purpose utilizes a pepper pot plate followed by a transparent scintillator and a CMOS camera for image capture. The second goal is to find the optimal operating point of the ion source by sweeping parameters such as RF power, vacuum pressure, extraction electrode position and voltage. To this extent, modifications of the ion source took place, as well as a measurement of the magnetic field inside the ion source. In this contribution the results of the emittance and other operating parameters measurements, as well as the design details of the emittance monitor are presented
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR052 Single-shot Bunch-by-Bunch Horizontal Beam Size Measurements using a Gated Camera at CesrTA 364
 
  • S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
 
  Funding: Work supported by NSF NSF PHY-1416318, PHYS-1068662, PHYS-1535696
A visible-light beam size monitor has been built and commissioned to measure transverse beam profiles at CESR-TA*. In order to eliminate beam jitter and to study bunch-by-bunch beam dynamics, a fast-gating camera has been utilized to measure single bunch transverse beam profiles. The minimum camera gate width is ~ 3ns which allows us to resolve single bunch beam dynamics along a CesrTA bunch train. Using single bunch interferometry at different bunch currents, we found that the horizontal beam sizes measured by gated camera are consistently less than those measured by a conventional CCD camera, demonstrating the elimination of turn-by-turn beam jitter with single shot capability. By stepping the camera trigger delay, we collected transverse beam profile images from each bunch in a 14ns-spacing 30-bunch train. The horizontal motion of each bunch as well as the horizontal beam size increases dramatically along an electron train but not along positron bunch trains under the same machine condition. The difference in single bunch horizontal dynamics may be a signature for the difference between electron cloud build-up for positron bunch trains versus ions present for electron bunch trains.
* S.T. Wang, D.L. Rubin, J. Conway, M. Palmer, D. Hartill, R. Campbell, R. Holtzapple, NIMA, 703 (2013) 80
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR054 Double-slit Interferometer Measurements at SPEAR3 368
 
  • C.L. Li, W.J. Zhang
    East China University of Science and Technology, Shanghai, People's Republic of China
  • M.J. Boland
    SLSA, Clayton, Australia
  • W.J. Corbett, M. Grinberg
    SLAC, Menlo Park, California, USA
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
  • Y.H. Xupresenter
    DongHua University, Songjiang, People's Republic of China
  • W.J. Zhang
    University of Saskatchewan, Saskatoon, Canada
 
  The resolution of a conventional telescope used to image visible-light synchrotron radiation is often limited by diffraction effects. To improve resolution, the double-slit interferometer method was developed at KEK and has since become popular around the world. Based on the Van Cittert-Zernike theorem relating transverse source profile to transverse spatial coherence, the particle beam size can be inferred by recording fringe contrast as a function of interferometer slit separation. In this paper, we describe the SPEAR3 double-slit interferometer, develop a theoretical framework for the interferometer and provide experimental results. Of note the double-slit system is 'rotated' about the beam axis to map the dependence of photon beam coherence on angle.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR055 Radiation-Resistant Fiber Optic Strain Sensors for SNS Target Instrumentation 371
 
  • Y. Liu, W. Blokland, J.D. Bryan, A. Rakhman, B.W. Riemer, R.L. Sangrey, M. Wendel, D.E. Winder
    ORNL, Oak Ridge, Tennessee, USA
  • A. Rakhman
    UTK, Knoxville, Tennessee, USA
  • R. Strum
    San Diego State University, San Diego, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Measurement of stresses and strains in the mercury target vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. Owing to their compactness, easy system integration, and invulnerability to the electromagnetic interference, fiber optic strain sensors have been installed into the SNS target module starting from the fall of 2015. In this talk, we report on the development of radiation-resistant fiber optic strain sensors for subsequent generations of SNS target instrumentation. The sensors are extrinsic Fabry-Perot interferometers (EFPIs) made from fluorine-doped single-mode fibers. The radiation induced loss of the fiber has been measured in the SNS target 13 at the energy-on-target level exceeding 500 MWhr which results in peak doses on fiber of more than 109 Gy. A superluminescent diode laser at 1300 nm is used as the light source and the strain is measured in real-time using quadrature phase shifted signals generated from a local interferometer. We have demonstrated successful measurements of strains from 1 to 1000 με at a kHz frequency range on a test plate using the developed interrogation optical system.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR056 Single-shot THz Spectrometer for Measurement of RF Breakdown in mm-wave Accelerators 374
 
  • S.V. Kutsaev, A.Y. Murokh, M. Ruelas, E.A. Savin, H.L. To
    RadiaBeam Systems, Santa Monica, California, USA
  • M. Dal Forno, V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • V. Goncharik
    Logicware Inc, New York, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under contract DE-SC0013684
We present a new instrument designed to detect RF pulse shortening caused by vacuum RF breakdown in mm-wave particle accelerators. RF breakdown limits the performance of high gradient RF accelerators. To understand the properties of these breakdowns, it is necessary to have diagnostics that reliably detect RF breakdowns. In X-band or S-band accelerators, RF breakdowns are detected by measuring RF pulse shortening, vacuum burst, or, if current monitors are available, spikes in the field-emitted currents. In mm-wave accelerators, all of these methods are difficult to use. In our experiments, we could not measure RF pulse shortening directly with a crystal detector because the RF pulse is very short'just a few nanoseconds'and changes in the measured signal were masked by RF amplitude jitter. To overcome this limitation, we built a single-shot spectrometer with a frequency range of 117-125 GHz and a resolution of 0.1 GHz. The spectrometer should be able to measure the widening of the spectrum caused by the shortening of nanosecond-long pulses. We present design considerations, first experimental results obtained at FACET, and planned future improvements for the spectrometer.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR057 Measurements using Button BPM SUM Signal 377
 
  • W.X. Cheng, K. Ha, J. Mead, O. Singh, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Modern digital BPM detectors measure not only the beam positions, four buttons SUM signal can be very helpful for machine developments and operations. At NSLS-II, BPM SUM signal has been used from commissioning stage, to investigate localized beam losses. During top-off operation, precise beam lifetime measurement within relative short period of time becomes important. With many BPMs along the ring, BPM SUM can be a much more accurate tool to measure the beam current and lifetime. BPM SUM signal shall be proportional to beam current, and it may depends on button sizes and BPM chamber geometry, cable attenuations, electronics attenuations, beam position, bunch lengths, fill pattern etc. Experience of BPM SUM signals measurements will be presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR058 Precise Beam Orbit Response Measurement with AC Excitation 380
 
  • W.X. Cheng, K. Ha, Y. Tian, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  Fast correctors at NSLS-II storage ring has broad frequency response (~1kHz bandwidth), together with high accurate BPM 10kHz data makes the broadband fast orbit feedback realistic. With integrated NCO, beam orbit response can be precisely measured while driving the electron beam with AC current. Compared to the normal DC orbit response measurement, this method eliminates the measurement errors due to orbit drift. Accurately measured orbit response matrix can be used to characterize the machine lattice. Fast corrector frequency responses have been measured using the same method, by scanning the excitation frequency. This information can be used to optimize the fast orbit feedback control loop.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR059 Development of S-band High Power Load 383
 
  • X.C. Meng, H.B. Chen, C. Cheng, Y.-C. Du, Q. Gao, J. Shi, P. Wangpresenter, Z.F. Xiong
    TUB, Beijing, People's Republic of China
 
  Several types of S-band high power loads have been designed, manufactured and tested successfully in Tsinghua University. The high power loads, which work at 2856 MHz for 10 MW~100 MW range, are made of all stainless steel. In this paper, we will present the design, fabrication and the high power test results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR060 C-Band Deflecting Cavity for Bunch Length Measurement of 2.5 MeV Electron Beam 386
 
  • J. Jiang, H.B. Chen, J. Shi, P. Wangpresenter, L. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  The C-band deflecting cavity designed last year is finished. In this paper, the RF measurement of the cavity is introduced. After tuning, it works well at 5.712GHz with a coupling factor degree around 1.05. And we measured the electromagnetic field with bead-pull method. The flatness of the magnetic field is around 0.9, which is not ideal but meet the requirements of the bunch length measurement. And we propose a method of tuning to make sure both frequency and field flatness.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)