Keyword: gun
Paper Title Other Keywords Page
MOPV018 Linac-200 Gun Control System: Status and Plans controls, electron, linac, electronics 161
 
  • M.A. Nozdrin, V.V. Kobets, V.F. Minashkin, A. Trifonov
    JINR, Dubna, Moscow Region, Russia
 
  Due to the development of the global Tango-based control system for Linac-200 accelerator, the new electron gun control system software was developed. Major gun electronics modification is foreseen. Current gun control system status and modification plans are reported.  
poster icon Poster MOPV018 [1.308 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV018  
About • Received ※ 09 October 2021       Revised ※ 19 October 2021       Accepted ※ 04 November 2021       Issue date ※ 03 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV019 Control System for 30 keV Electron Gun Test Facility controls, electron, PLC, experiment 433
 
  • D.A. Nawaz, M. Ajmal, A. Majid, N.U. Saqib, F. Sher
    PINSTECH, Islamabad, Pakistan
 
  At LINAC Project PINSTECH, an electron gun test facility for indigenously developed 30 keV electron guns is developed to control and monitor various beam parameters by performing electron beam tests and diagnostics. After successful testing, electron gun is then integrated into 6 MeV standing wave linear accelerator. This paper presents the control system design and development for the facility.  
poster icon Poster TUPV019 [1.468 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV019  
About • Received ※ 10 October 2021       Accepted ※ 20 November 2021       Issue date ※ 09 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV020 Automatic RF and Electron Gun Filament Conditioning Systems for 6 MeV LINAC vacuum, cavity, electron, controls 437
 
  • A. Majid, D.A. Nawaz, N.U. Saqib, F. Sher
    PINSTECH, Islamabad, Pakistan
 
  RF conditioning of vacuum windows and RF cavities is a necessary task for eliminating poor vacuum caused by outgassing and contamination. Also, startup and shutdown process of linear accelerator requires gradual increase and decrease of electron gun filament voltage to avoid damage to the filament. This paper presents an EPICS based multi-loop automatic RF conditioning system and Electron Gun filament conditioning system for Klystron based 6 MeV Linear Accelerator.  
poster icon Poster TUPV020 [1.822 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV020  
About • Received ※ 10 October 2021       Revised ※ 17 October 2021       Accepted ※ 20 November 2021       Issue date ※ 26 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV021 Machine Learning for RF Breakdown Detection at CLARA cavity, network, detector, operation 681
 
  • A.E. Pollard, D.J. Dunning, A.J. Gilfellon
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Maximising the accelerating gradient of RF structures is fundamental to improving accelerator facility performance and cost-effectiveness. Structures must be subjected to a conditioning process before operational use, in which the gradient is gradually increased up to the operating value. A limiting effect during this process is breakdown or vacuum arcing, which can cause damage that limits the ultimate operating gradient. Techniques to efficiently condition the cavities while minimising the number of breakdowns are therefore important. In this paper, machine learning techniques are applied to detect breakdown events in RF pulse traces by approaching the problem as anomaly detection, using a variational autoencoder. This process detects deviations from normal operation and classifies them with near perfect accuracy. Offline data from various sources has been used to develop the techniques, which we aim to test at the CLARA facility at Daresbury Laboratory. These techniques could then be applied generally.  
poster icon Poster WEPV021 [1.565 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV021  
About • Received ※ 09 October 2021       Accepted ※ 21 November 2021       Issue date ※ 24 November 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAL03 Machine Learning Based Middle-Layer for Autonomous Accelerator Operation and Control controls, linac, operation, vacuum 797
 
  • S. Pioli, B. Buonomo, D. Di Giovenale, C. Di Giulio, L.G. Foggetta, G. Piermarini
    LNF-INFN, Frascati, Italy
  • F. Cardelli, P. Ciuffetti
    INFN/LNF, Frascati, Italy
  • V. Martinelli
    INFN/LNL, Legnaro (PD), Italy
 
  The Singularity project, led by National Laboratories of Frascati of the National Institute for Nuclear Physics (INFN-LNF), aim to develop automated machine-independent middle-layer to control accelerator operation through machine learning (ML) algorithms like Reinforcement Learning (RL) and Cluster integrated with accelerator’s sub-systems. In this work we will present architecture and of the middle-layer made with main purpose to drive user requests through the control framework backend and allow users to enjoy a better User Experience (UX) handling system performances without facing problems due to the interaction with control system. We will report the strategy to develop autonomous operation control with RL algorithms together with the fault detection capability improved by Clustering approach as breakdown and waveguide and RF cavity thermal stability monitor. Results of the first period of operation of this system, currently operating at the electron-positron LINAC of the Dafne complex in Frascati, autonomously controlling accelerator performance in terms of beam transport, beam current optimization and RF cavity phase-jitter compensation will be reported.  
slides icon Slides THAL03 [0.960 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THAL03  
About • Received ※ 19 October 2021       Accepted ※ 22 December 2021       Issue date ※ 16 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)