

Machine learning based middle-layer for autonomous accelerator operation and control THALO3

21/10/2021

INFN-LNF :: <u>S. Pioli</u>, B. Buonomo, F. Cardelli, P. Ciuffetti, L. G. Foggetta, C. Di Giulio, D. Di Giovenale, G. Piermarini

INFN-LNL :: V. Martinelli

Outline

Singularity project aim to develop automated middle-layer to control accelerator operation through machine learning (ML) algorithms.

General capabilities:

- Machine indipendent
- Device misalignment and performance drift indipendent

Reinforcement Learning based tools for autonomous:

- Particle beam energy tuning
- Particle beam charge optimization

	Design	Operational	
Electron beam final energy	800 MeV	510 MeV	
Positron beam final energy	550 MeV	510 MeV	
RF frequency	2856 MHz		
Positron conversion energy	250 MeV	220 MeV	
Beam pulse rep. rate	1 to 50 Hz	1 to 50 Hz	
Beam macropulse length	10 nsec	1.4 to 300 nsec	
Gun current	8 A	8 A	
Beam spot on positron converter	1 mm	1 mm	
norm. Emittance (mm. mrad)	1 (electron) 10 (positron)	<1.5	
rms Energy spread	0.5% (electron) 1.0% (positron)	0.5% (electron) 1.0% (positron)	
electron current on positron converter	5 A	5.2 A	
Max output electron current	>150 mA	500 mA	
Max output positron current	36 mA	85 mA	
Trasport efficiency from capture section to linac end	90%	90%	
Accelerating structure	SLAC-type, CG, 2π/3		
RF source	4×45 MWp sledded klystrons TH2128C		

Dafne LINAC control system

Dafne LINAC beam energy tuning tool

Automate accelerator beam energy tuning.

Positron e+/e-Converter separator GUN PS PS & Attn. SLED SLED SLED SLED KLY. KLY KLY Mod. Mod. Mod. KLY. Mod. 200 200 200 V **RF SOURCE** 2856 MHz Agent reward state action r_t a_t S_{f} Environment Markov Decision Process (MDP)

Environment:

• 2 RF Sources:

Phase-C SetPoint [20, 70] deg +/- 0.1 deg Phase-D SetPoint [150, 245] deg +/- 0.1 deg Power-C SetPoint [0, 35] MW +/- 1 MW Power-D SetPoint [0, 55] MW +/- 1 MW

• 1 Odoscope [400, 650] MeV +/- 3 MeV

Dafne LINAC beam energy tuning tool

Agent:

 Q-learning to estimate optimal policy Q* to maximize scoring:

 $max(energy_{target} - energy)$

 Exploration vs Exploitation balancing through decaying ε-greedy strategy.

Q* (State, Action)	ph-c,Pot-c, ph-d,Pot-d,	ph-c,Pot-c, ph-d,Pot-d,	ph-c,Pot-c, ph-d,Pot-d,
energy			
Energy working point			goal
Huge Di	mension !!!		

Markov Decision Process (MDP)

Bellman transition function:

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha (r + \gamma \cdot max_a Q(s_{t+1}, a))$$

$$\alpha = learning \ rate$$

$$\gamma = discount \ factor$$

Dafne LINAC beam energy tuning tool

Training on 300 simulated episodes:

- Instance linac lattice
- 1. generate random [phase, power] setpoint
- 2. Move RF sources updating $Q(s, a) \rightarrow Q^*$
- 3. Final Goal:

 $energy_{target} - energy < energy_{tollerance}$

Results:

- RL algorithm tested with simulated data:
 - AI trained in 1ksteps (expected 1 week of beam shift).
 - Capable of training on moltiple working point in parallel.
 - Machine, misalignment and performance drift indipendent.

Dafne LINAC beam charge optimization tool

Markov Decision Process (MDP)

Automate accelerator beam charge optimization.

Environment:

• 8 Quadrupole Magnets

Current PSU SetPoint [0, 10] A +/- 0.1 A

• 2 BCMs [0, 1.2] mA +/- 1 uA

Dafne LINAC beam charge optimization tool

Agent:

 Q-learning to estimate optimal policy Q* to maximize scoring:

 $max(charge \ ratio_{target} - charge \ ratio)$

 Exploration vs Exploitation balancing through decaying ε-greedy strategy.

Q* (State, Action)	Q1,Q2,Q3	Q1,Q2,Q3	Q1,Q2,Q3
Charge ratio			
Optimal charge ratio			goal

Huge Dimension !!!

Bellman transition function:

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha (r + \gamma \cdot max_a Q(s_{t+1}, a))$$

$$\alpha = learning \ rate$$

$$\gamma = discount \ factor$$

Dafne LINAC beam charge optimization tool

Training on 300 simulated episodes:

- Instance linac lattice
- 1. generate random quads setpoint
- 2. Move quads updating $Q(s, a) \rightarrow Q^*$
- 3. Final Goal:

 $charge \ ratio_{target} - charge \ ratio < \ charge \ ratio_{tollerance}$

Results:

- RL algorithm tested with simulated data:
 - AI trained in 2ksteps (expected 2 weeks of beam shift).
 - Machine, misalignment and performance drift indipendent.

Conclusions and next steps

- Reinforcement Learning tools validated as suitable for autonomous operation on accelerator facilities in operation, in commissioning or in old complex.
- RL tools developed to be easily configured on different lattice with safe operation limit.
- Training period reasonable to schedule dedicated beam shifts.
- First test shift at Dafne LINAC scheduled for next weeks.
- Upgrade to Deep Q-Networks should be done to improve memory managment.

Thank you for the attention