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Abstract
The Singularity project, led by National Laboratories of

Frascati of the National Institute for Nuclear Physics (INFN-
LNF), aim to develop automated machine-independent
middle-layer to control accelerator operation through ma-
chine learning (ML) algorithms like Reinforcement Learning
(RL) and Clustering, integrated with accelerator sub-systems.
In this work we will present the actual LINAC control system
and the necessary effort to implement the architecture and
the middle-layer necessary to develop autonomous operation
control with RL algorithms together with the fault detection
capability improved by Clustering approach as for waveg-
uides or accelerator sections breakdown. Results of the first
tentative operation of Singularity on the LINAC system will
be reported.

INTRODUCTION
In this paper we will present our effort to integrate a Ma-

chine Learning (ML) based middle-layer integrated in the
DAΦNE LINAC in order to demonstrate the feasibility of
autonomous operation driven by RL algorithm together with
Clustering fault detection methods to identify breakdown
activities.
The main obstacle to implement the Singularity project

[1] in the DAΦNE LINAC is related to the time available
for the development and test the system in an operating
accelerator for 4500 hours per year. The COVID periodswith
the reduced activities permits to implement the necessary
step to provides at Singularity the data to implements the
algorithms.
In the first part of this work introduction of the LINAC

elements will be provided and an overview on the the actual
control system is shown to introduce the architecture of the
system and the middle layer implemented to provides the
data to Singularity.
In the second part of the work description of RL algo-

rithms and Singularity middle layer will presented and re-
lated integration and performances obtain on off-line opera-
tion will be presented and discussed.

THE DAΦNE LINAC
The DAΦNE injector is composed by a ~60m long Linac

that produces and accelerates up to the collider operation en-
ergy (510MeV) both the positron and electron beams. It has
been designed and built by the USA firm TITAN BETA and
commissioned by the INFN-LNF staff [2]. In Fig. 1 shows
∗ stefano.pioli@lnf.infn.it

Figure 1: The LINAC layout.

the LINAC RF layout. The injector subsystem includes a
thermionic electron gun, a prebuncher and a buncher. The
sections performing at S-band working at 2856MHz, and are
powered by 4 klystrons Thomson TH2128C, with nominal
output power of 45MW, each one equipped with a SLED,
the SLAC type pulse compressor device. The performances
of the LINAC are summarized in Fig. 2.

Figure 2: The LINAC beam performances.

After an upgrade on the gun [3] all the parameters as bunch
duration and the other gun parameters and RF power in the
RF guide distribution and in the sections could be controlled
by klystron voltage set and the low level RF input of each
klystron (power and phase) and the prebuncher, buncher,
capture section power and phases could be set.
The focusing system varies its conformation according

to the requirements of the portion of the LINAC interested.
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Figure 3: The LINAC magnet elements and diagnostics.

An easy way to describe this system is to follow a particle
beam from the gun up to the LINAC end. More than 30
quadrupoles and a network of more than 20 vertical and
horizontal correctors, coupled on each of the accelerating
section approximately, permits the LINAC orbit correction.
All the power supply of this magnets system are controlled
by the LINAC control system and part by DAFNE control
system.
The LINAC beam diagnostics system which includes a

total of 14 beam position monitors BPM, 4 beam current
monitors (BCM) and 4 beam profile monitors (flags). The
BPMs are acquired by amultiplexed PXI independent system
and the WCM by oscilloscope by a HP Multiplexer.
The position monitors are of the capacitive type with four

electrodes, see Fig. 3. The voltages induced by the beam
on these electrodes, properly combined, give the transverse
position of the beam.
The current monitors are of the resistive wall type. The

vacuum chamber continuity is interrupted by a ceramic gap
and several resistors uniformly distributed around the gap
create a resistive bridge, where the beam image current on
the vacuum chamber can flow through. By monitoring the
voltage drop on the resistors it is possible to derive the current
value. Moreover the frequency response of the monitor is
sufficient to reproduce the shape of the macrobunch (10 ns)
with a good fidelity. Several examples of the current monitor
signal are showed in Fig. 3.
To check the energy and the charge of the beam at the and

of the LINAC a pulsed magnet drive one of the 50 bunch
each second in the hodoscope spectrometer.

THE LINAC CONTROL SYSTEM
A distributed architecture has been chosen for the LINAC

control system. These provide the feature to run all or part
of the system individually for test and trouble-shooting, and
being able to co-locate a subsystem with it’s controls.
Originally the control system is operated through a control

computer located remotely from the LINAC. An Apple Mac
II run National Instruments LabVIEW originally and after a
few upgrade in 2013 a server DELL with a virtual machine
where the original LabVIEW 3.0 software was upgrade to
LabVIEW 2010 on CentOS 7. The control software provides
GUI shown in Fig. 4 and the operator full control of all
functions and communicate with the CAMAC control system

Figure 4: The LINAC control system GUI.

via an IEEE-488 (GPIB) fiber-optical data link to isolate the
computer from the control system.
A remote manual control panel is provided to perform

limited hardwire commands and includes hardwire interlock
functions. The control computer allow data logging of the
system parameters with no impact on system performance.
A CAMAC based interface was selected in 1996 for this
system on the basis of performance, module availability, and
familiarity with programming and operation of CAMAC
based systems.
The CAMAC crate and associated controller, GPIB in-

terfaces, and all digital and analog modules are located in
the local control rack. The Command and Control buses
handles all of the system wide commands and response from
all of the subsystems. The Auxiliary buses is used for subsys-
tem specific specific commands and response for the various
operational configuration. All of the analog control and mon-
itor signals are not bus-connected, but run direct to/from
the required location in the shielded twisted pair cables, us-
ing various interface chassis as terminations points. Al the
system under control are shown in Fig. 5.
The integration of all the systems and diagnostics are

done following the schema represented in Fig. 6 follow the
methodology presented in [4] to send and communicate with
the Singularity AI. This system allows to integrate different
data sources from the LINAC control system with the BPM
system, WCM system and DAΦNE control system [5] and
to send the command with the same interface.

THE REINFORCEMENT LEARNING
APPROACH

According to Sutton’s [6], Reinforcement Learning (RL)
is a learning technique to map situations onto actions in order
to maximize a numerical reward signal. The learner is not
told which actions to perform, but must figure out through
trial and error which actions yield the greatest reward by try-
ing them. In the most interesting and challenging cases, the
actions may affect not only the immediate reward, but also
the next situation and through that, all subsequent rewards.
These two characteristics (trial-and-error search and delayed
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Figure 5: The LINAC control system.

Figure 6: The LINAC control system and diagnostic acqui-
sition.

reward) are the two most important distinguishing features
of reinforcement learning.
Reinforcement learning is distinct from supervised learn-

ing, the type of learning studied in most current research in
machine learning. Supervised learning is learning from a
training set of labeled examples provided by a knowledge-
able external supervisor. Each example is a description of a
situation along with a specification (the label) of the correct
action that the system should take in that situation, often to
identify a category to which the situation belongs. The goal
of this type of learning is for the system to extrapolate or
generalize its responses so that it acts correctly in situations
not included in the training set.
One of the challenges that reinforcement learning faces is

the trade-off between exploration and exploitation that does
not exist in other types of learning. To obtain a high reward,
a reinforcement learning agent must prefer actions that it
has tried in the past and found to be effective in obtaining a
reward. However, in order to discover such actions, it must
also try actions that it has not previously selected. The agent
has to exploit what it has already experienced in order to
obtain a reward, but it must also has to explore in order to
make a better action selections in the future. The dilemma

is that neither exploration nor exploitation can be pursued
exclusively without failing at the task. The agent must try a
variety of actions and gradually prefer those that seem best
to it.
Q-learning [7] is a form ofmodel-free reinforcement learn-

ing. It can also be considered as a method of asynchronous
dynamic programming. It provides agents with the opportu-
nity to learn to act optimally in Markovian domains, Fig. 7,
by experiencing the consequences of their actions without
having to create maps of the domains. Learning proceeds
similarly to Sutton’s [6] method of temporal differences
(TD): an agent tries an action in a given state and evaluates
its consequences based on the immediate reward or penalty
it receives and its estimate of the value of the state it is
placed in. By repeatedly trying all actions in all states, it
learns which actions are best overall, judged by the long-
run discounted reward according to the Bellman transition
function.

Figure 7: Markov Decision Process.

In this case, the learned action value function Q is a direct
approximation to q*, the optimal action value function, re-
gardless of the strategy followed. This drastically simplifies
the analysis of the algorithm and allows for early conver-
gence proofs. The policy still has an impact as it determines
which state-action pairs are visited and updated. However,
all that is required for proper convergence is that all pairs
continue to be updated.
Under this assumption and a variant of the usual stochas-

tic approximation conditions for the sequence of step-size
parameters, Q converge to q* with probability 1. The Q-
learning algorithm is presented below in procedural form in
Fig. 8.

CONTROL SYSTEM INTEGRATION &
FAULT DETECTION

Mem-cached live data from LINAC control system is
acquired from Singularity middle-layer while a REST com-
munication channel allow to change devices setpoint.
In order to allow the proper data validation for ML algo-

rithm, interlock signals are acquired from the CAMAC in
order to break and restore operation when a fault happens.
Anyway not all the fault trigger an interlock like RF anomaly
that should be processed through a data analysis to identify
breakdown phenomena and stop the autonomous operation
while the issue is occurring.
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Figure 8: Q-learning pseudo-code iteration.

In order to handle this kind of RF events a Clustering
algorithm have been involved to automatically recognize
pattern inside the data so as to analyze the collected data
without their labels. Using this advantage, a density based
clustering fault diagnosis method have been used to deal
with such RF breakdown issues, in which the labeled data
are limited.
The Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) [8] algorithm requires two input pa-
rameters, a radius and minimum number used to define a
density threshold in the data space. DBSCAN is an itera-
tive algorithm which iterates over the objects in the dataset,
analyzing their neighborhood. If there are more than cer-
tain number of objects whose distance from the considered
object is less than the reference, then the object and its neigh-
borhood originate a new cluster. DBSCAN is effective at
finding clusters with arbitrary shape, and it is capable of
identifying outliers as a low density area in the data space.

Figure 9: DBSCAN output in normal operation which iden-
tify one cluster.

Figure 10: DBSCAN output in breakdown events which
identify several clusters.

Thanks to this unsupervised learning technique have been
possible control n-dimensional system identified by the evo-
lution of RF power signal and all the vacuum ion pumps
current trends in order to identify breakdown. The algo-
rithm is setup to expect one cluster made of a reasonable
distribution of point from RF power and ion pumps current
distribution, as in Fig. 9. The minimum number of point to
identify a cluster is set one in order to allow the classifica-
tion of fault when just one ion pump show an anomalous
behavior. When a vacuum readback moves out from the
cluster, as in Fig. 10, this is identified as a second cluster and
trigger the identification of a breakdown event stopping the
execution of RL algorithm. This process is performed for
all the RF sources of the LINAC and all the related vacuum
ion pumps.
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AUTONOMOUS OPERATION TOOLS
Two tools for autonomous operation have been developed

in order to handle main tasks, really time consuming, which
involves the operators team to reach required performances
for the DAΦNE complex and the BTF.
As general comment, all the tools have been developed to

be capable of machine independence from the accelerator
layout and to be invariant to performance drift of aged de-
vices. The combination of these two conditions allow to use
these tools independently on different new-one or legacy ac-
celerator just configuring the schematic lattice and operating
parameter of each device. The algorithm, during the training
phase, will learn how to drive each device identifying for
each setpoint the contribute to reach the goal state.

RF Sources Energy Tuning
According with definition of a Markovian Decision Pro-

cess (MDP), the scope of this tool is the energy tuning of the
LINAC beam through the control of two RF Sources (power
and phase) after the positron converter and the monitoring
the hodoscope at the end of the LINAC which provide the
beam energy, as shown in Fig. 11.

Figure 11: Highlighted in red the RF sources and related
distribution controlled by the RF energy tuning tool.

Figure 12: Score trend during each step of the 300 episodes
training.

We identify for each variable of the environment operative
ranges and the related accuracy. So the state-action matrix
comes from the combination of all the possible action of
the four variable parameters (power and phase of the two

Figure 13: Number of Steps during each one of the 300
episodes training.

RF sources) with all the possible states (hodoscope energy
readback). The Q-learning agent provide variable reward in
function of the different between the current beam energy
and the target beam energy.
A simulated run with off-line data have been performed

in order to test the algorithm over 300 episode. As shown in
Figs. 12 and 13, the algorithm converge to Q* within 1000
steps equivalent to about one day of training on the LINAC
(taking in consideration the required time to perform and
stabilize a command with the CAMAC control system).

Beam Charge Optimization
The scope of this tool is optimize the charge of the LINAC

beam through the control of 8 quadrupole magnets power
supply, after the positron converter, and 2 beam current
monitors (BCM) monitoring the beam current up to the end
of the LINAC, as shown in Fig. 14.

Figure 14: Highlighted in red the distribution of quadrupole
magnets while in blue the position of the BCMs controlled
by the Beam Current Optimization tool.

We identify for each variable of the environment operative
ranges and the related accuracy. So the state-action matrix
comes from the combination of all the possible action of the
8 variable parameters (the current setpoint of each power
supply) with all the possible states (percentage of current
transported through the two BCMs). The Q-learning agent
provide variable reward in function of the different between
the ratio of current transported and the target beam current
ratio.
A simulated run with off-line data have been performed

in order to test the algorithm over 300 episode. As shown in
Figs. 15 and 16, the algorithm converge to Q* within 2000
steps equivalent to about two days of training on the LINAC
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Figure 15: Score trend during each step of the 300 episodes
training.

Figure 16: Number of Steps during each one of the 300
episodes training.

(taking in consideration the required time to perform and
stabilize a command with the CAMAC control system).

CONCLUSION
The work presented in this paper show the progress in

the development of Machine Learning based middle layer

focused on Reinforcement Learning tool for automated op-
erations.
Design of the DAΦNE LINAC control system, the first

testing site, have been introduced together with the architec-
ture of the Q-learning algorithm.
Validation process on off-line data highlight not only the

feasibility of presented tools but also the capability to be
trained on a LINAC with a small effort of few days of dedi-
cated beam shift.
Next steps for the use of ML tools in operation will pass

through a test shift to be scheduled in next months and an
upgrade of the state-action matrix to a Deep Q-Network
(DQN) to optimize memory usage.
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