Author: Blanco Vinuela, E.    [Blanco Viñuela, E.]
Paper Title Page
MOPV010 Working under Pandemic Conditions: Contact Tracing Meets Technology 121
 
  • E. Blanco Viñuela, B. Copy, S. Danzeca, Ch. Delamare, R. Losito, A. Masi, E. Matli, T. Previero, R. Sierra
    CERN, Geneva, Switzerland
 
  Covid-19 has dramatically transformed our working practices with a big change to a teleworking model for many people. There are however many essential activities requiring personnel on site. In order to minimise the risks for its personnel CERN decided to take every measure possible, including internal contact tracing by the CERN medical service. This initially involved manual procedures which relied on people’s ability to remember past encounters. To improve this situation and minimise the number of employees who would need to be quarantined, CERN approved the design of a specific device: the Proximeter. The project goal was to design a wearable device, built in a partnership* with industry fulfilling the contact tracing needs of the medical service. The proximeter records other devices in close proximity and reports the encounters to a cloud-based system. The service came into operation early 2021 and 8000 devices were distributed to personnel working on the CERN site. This publication reports on the service offered, emphasising on the overall workflow of the project under exceptional conditions and the implications data privacy imposed on the design of the software application.
* Terabee. https://www.terabee.com
 
poster icon Poster MOPV010 [3.489 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV010  
About • Received ※ 11 October 2021       Revised ※ 26 October 2021       Accepted ※ 03 November 2021       Issue date ※ 18 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV035 Continuous Integration for PLC-based Control System Development 478
 
  • B. Schofield, E. Blanco Viñuela, J.H.P.D.C. Borrego
    CERN, Geneva, Switzerland
 
  Continuous Integration and Continuous Deployment (CI/CD) is a software engineering methodology which emphasises frequent, small changes committed to a version control system, which are verified by a suite of automatic tests, and which may be deployed to different environments. While CI/CD is well established in software engineering, it is not yet widely used in the development of industrial controls systems. However, the advantages of using CI/CD for such systems are clear. In this paper we describe a complete CI/CD pipeline able to automatically build Siemens PLC projects from sources, download the program to a PLC, and run a sequence of tests which interact with the PLC via both a Simulation Unit Profibus simulator and an OPC UA interface provided by Simatic NET. To achieve this, a gRPC service wrapping the Simatic API was used to provide an interface to the PLC project from the pipeline. In addition, a Python wrapper was created for the Simulation Unit API, as well as for the OPC UA interface, which allowed the test suite to be implemented in Python. A particle accelerator interlock system based on Siemens S7-300 PLCs has been taken as a use case to demonstrate the concept.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV035  
About • Received ※ 08 October 2021       Accepted ※ 20 November 2021       Issue date ※ 25 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBR02 Towards the Optimization of the Safety Life-Cycle for Safety Instrumented Systems 586
 
  • B. Fernández Adiego, E. Blanco Viñuela, Th. Otto, R. Speroni, G. de Assis Schmidt
    CERN, Geneva, Switzerland
 
  The design and development of Safety Instrumented Systems (SIS) according to the IEC 61511 standard is a long and costly process. Although the standard gives recommendations and guidelines for each phase of the safety life-cycle, implementing them is not a simple task. Access to reliability data, hardware and systematic safety integrity analysis, software verification, generation of reports, guarantee of traceability between all the phases and management of the project are some of the main challenges. In addition, some of the industrial processes or test-benches of large scientific installations are in continuous evolution and changes are very common. This adds extra complexity to the management of these projects. This paper presents an analysis of the safety life-cycle workflow and discusses the biggest challenges based on our experience at CERN. It also establishes the basis for a selection of the tools for some of the safety life-cycle phases, proposes report templates and management procedures and, finally, describes the roles of the different members in our functional safety projects.  
slides icon Slides WEBR02 [2.603 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEBR02  
About • Received ※ 07 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 December 2021       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV042 Applying Model Checking to Highly-Configurable Safety Critical Software: The SPS-PPS PLC Program 759
 
  • B. Fernández Adiego, E. Blanco Viñuela, F. Havart, T. Ladzinski, I.D. Lopez-Miguel, J-C. Tournier
    CERN, Geneva, Switzerland
 
  An important aspect of many particle accelerators is the constant evolution and frequent configuration changes that are needed to perform the experiments they are designed for. This often leads to the design of configurable software that can absorb these changes and perform the required control and protection actions. This design strategy minimizes the engineering and maintenance costs, but it makes the software verification activities more challenging since safety properties must be guaranteed for any of the possible configurations. Software model checking is a popular automated verification technique in many industries. This verification method explores all possible combinations of the system model to guarantee its compliance with certain properties or specification. This is a very appropriate technique for highly configurable software, since there is usually an enormous amount of combinations to be checked. This paper presents how PLCverif, a CERN model checking platform, has been applied to a highly configurable Programmable Logic Controller (PLC) program, the SPS Personnel Protection System (PPS). The benefits and challenges of this verification approach are also discussed.  
poster icon Poster WEPV042 [1.880 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV042  
About • Received ※ 07 October 2021       Accepted ※ 21 November 2021       Issue date ※ 25 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXL04
PLC Based Control Systems Workshop  
 
  • E. Blanco Viñuela, B. Fernández Adiego, B. Schofield, J.O. Vidal
    CERN, Geneva, Switzerland
 
  This workshop intends to create a collaborative space where attendees will show their best practices, tools employed and return of experience when engineering PLC based control systems. Topics that will be addressed: 1.Specifications, requirements trace, documents: analysis, design, implementation. 2.Software development: standards and/or frameworks, novel paradigms (e.g. automatic code generation, object orientation), language choice and coding conventions, best practices. 3.Testing and verification: methodologies and tests (FAT, SAT), simulation, static analysis, verification (e.g. formal methods). 4.Application management: versioning, deployment, online changes, upgrades, reverse engineering. 5.Technology evolution: embedded communications (e.g. OPC-UA, MQTT…), edge computing, new domains of application.  
video icon
 
  please see instructions how to view/control embeded videos  
slides icon Slides FRXL04 [2.867 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)