

Towards the optimization of the Safety Life-Cycle for Safety Instrumented Systems (WEBR02)

B. Fernández, G. De Assis, R. Speroni, T. Otto and E. Blanco

20/10/2021

• The goal is to **ensure safety** in our industrial installations

3/8/2022

win l

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards

See.

CALEPCS 202

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards
- IEC 61511 standard SIS (Safety Instrumented Systems) for the industrial process sector

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards
- IEC 61511 standard SIS (Safety Instrumented Systems) for the industrial process sector
- It provides the safety life-cycle:

CALEPCS 202

- 11 phases (to complete the project)
- 19 Clauses (requirements)

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards
- IEC 61511 standard SIS (Safety Instrumented Systems) for the industrial process sector
- It provides the safety life-cycle:

- 11 phases (to complete the project)
- 19 Clauses (requirements)

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards
- IEC 61511 standard SIS (Safety Instrumented Systems) for the industrial process sector
- It provides the safety life-cycle:

- 11 phases (to complete the project)
- 19 Clauses (requirements)

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards
- IEC 61511 standard SIS (Safety Instrumented Systems) for the industrial process sector
- It provides the safety life-cycle:
 - 11 phases (to complete the project)
 - 19 Clauses (requirements)

CALEPCS 202

- The goal is to ensure safety in our industrial installations
- ... by developing Safety Instrumented Systems (SIS) based on the Functional Safety standards
- IEC 61511 standard SIS (Safety Instrumented Systems) for the industrial process sector
- It provides the safety life-cycle:
 - 11 phases (to complete the project)
 - 19 Clauses (requirements)
- Very challenging task to implement all the requirements (lots of resources and time-consuming)

Some major challenges:

Objectives:

3/8/2022

wing of

Some major challenges:

Objectives:

- 1. Proving the compliance with the standard:
 - **Technical** challenges
 - Management challenges

wy.

CALEPCS 202

Some major challenges:

CALEPCS 20

- 1. Proving the compliance with the standard:
 - **Technical** challenges
 - Management challenges
- 2. Deal with the **constant evolution** of the particle accelerators and experimental areas

Some major challenges:

- 1. Proving the compliance with the standard:
 - **Technical** challenges
 - Management challenges
- 2. Deal with the **constant evolution** of the particle accelerators and experimental areas
- 3. Keep the **traceability** between the phases

Some major challenges:

- 1. Proving the **compliance with the standard**:
 - **Technical** challenges
 - Management challenges
- 2. Deal with the **constant evolution** of the particle accelerators and experimental areas
- 3. Keep the **traceability** between the phases

- 1. Ensure safety
- 2. SIS compliant with the IEC standards

Some major challenges:

- 1. Proving the **compliance with the standard**:
 - **Technical** challenges
 - Management challenges
- 2. Deal with the **constant evolution** of the particle accelerators and experimental areas
- 3. Keep the **traceability** between the phases

- 1. Ensure safety
- 2. SIS compliant with the IEC standards
- 3. Find **solutions to optimize the implementation** of the safety life-cycle:
 - Apply the recommended methods
 - Integrate existing tools to the safety life-cycle
 - Create report templates
 - Improve of our management procedures

Some major challenges:

- 1. Proving the **compliance with the standard**:
 - **Technical** challenges
 - Management challenges
- 2. Deal with the **constant evolution** of the particle accelerators and experimental areas
- 3. Keep the traceability between the phases

- 1. Ensure safety
- 2. SIS compliant with the IEC standards
- 3. Find **solutions to optimize the implementation** of the safety life-cycle:
 - Apply the recommended methods
 - Integrate existing tools to the safety life-cycle
 - Create report templates
 - Improve of our management procedures

Some major challenges:

- 1. Proving the **compliance with the standard**:
 - **Technical** challenges
 - Management challenges
- 2. Deal with the **constant evolution** of the particle accelerators and experimental areas
- 3. Keep the traceability between the phases

Objectives:

- 1. Ensure safety
- 2. SIS compliant with the IEC standards
- 3. Find **solutions to optimize the implementation** of the safety life-cycle:
 - Apply the recommended **methods**
 - Integrate existing **tools** to the safety life-cycle
 - Create report templates
 - Improve of our management procedures

This paper analyses **some** of the most challenging **phases (1, 3, 4 and 10)** and presents the **adopted solutions**

3/8/2022

100 20000

Identify the hazards, the risks and evaluate the necessary risk reduction -Target Safety Integrity Level (SIL)

wing of

CALEPCS 202

Identify the hazards, the risks and evaluate the necessary risk reduction -Target Safety Integrity Level (SIL)

FMEA (Failure Mode and Effect Analysis)

Subsystem	Failure Mode	Effects	Causes	Current mitigation measures
Water-cooled system	High temperature	Melting insulation, short circuit and electrocution	Water leak	None

Identify the hazards, the risks and evaluate the necessary risk reduction - Target Safety Integrity Level (SIL)

3/8/2022

FMEA (Failure Mode and Effect Analysis)

Calibrated risk graph method for each failure mode

Subsystem	Failure Mode	Effects	Causes	Current mitigation measures
Water-cooled system	High temperature	Melting insulation, short circuit and electrocution	Water leak	None

m.

Identify the hazards, the risks and evaluate the necessary risk reduction -Target Safety Integrity Level (SIL)

FMEA (Failure Mode and Effect Analysis)

Calibrated risk graph method for each failure mode

- Consequence (C)
- Exposure time (F)
- Prob. of avoiding the hazardous event (P)
- Demand rate (W)

ng.

CALEPCS 2021

Identify the hazards, the risks and evaluate the necessary risk reduction -Target Safety Integrity Level (SIL)

3/8/2022

FMEA (Failure Mode and Effect Analysis)

Calibrated risk graph method for each failure mode

- Consequence (C)
- Exposure time (F)
- Prob. of avoiding the hazardous event (P)
- Demand rate (W)

ma l

Identify the hazards, the risks and evaluate the necessary risk reduction -Target Safety Integrity Level (SIL)

FMEA (Failure Mode and Effect Analysis)

Calibrated risk graph method for each failure mode

- Consequence (C)
- Exposure time (F)
- Prob. of avoiding the hazardous event (P)
- Demand rate (W)

CALEPCS 202

For personnel, machine and environmental protection

4

Challenges:

100 20000

ICALEPCS 2021

• Challenges:

Define the tolerable risk for personnel and machine protection – risk graph calibration

wing of

ICALEPCS 2021

• Challenges:

- Define the tolerable risk for personnel and machine protection risk graph calibration
- Personnel protection: examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E

m.

• Challenges:

- Define the tolerable risk for personnel and machine protection risk graph calibration
- Personnel protection: examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E
- Machine protection (asset loss): corporative decision

CALEPCS 202

• Challenges:

- Define the tolerable risk for personnel and machine protection risk graph calibration
- Personnel protection: examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E
- Machine protection (asset loss): corporative decision

	Consequence		Occupancy		Possib. of avoidance		Prob. of failure	
CA	delay < few hours	FB	always	PA	automatic system that detects and alerts the operators	W1	< 1 failure per 10 years	
CB	few hours < delay < few days			PB	There is not	W2	< 1 failure per year	
CC	few days < delay < few weeks					W3	> 1 failure per year	
CD	delay > a month or cancellation of test program		-	-				

• Challenges:

- Define the tolerable risk for personnel and machine protection risk graph calibration
- Personnel protection: examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E
- Machine protection (asset loss): corporative decision

	Consequence			Occupancy Possib. of avoidance			Prob. of failure	
CA CB CC CD	delay < few hours few hours < delay < few days few days < delay < few weeks delay > a month or cancellation of test program	FB	always	PA PB	automatic system that detects and alerts the operators There is not	W1 W2 W3	< 1 failure per 10 years < 1 failure per year > 1 failure per year	

• Challenges:

- Define the tolerable risk for personnel and machine protection risk graph calibration
- Personnel protection: examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E
- Machine protection (asset loss): corporative decision

Consequence	Oce	cupancy	Po	ssib. of avoidance		Prob. of failure	
CAdelay < few hours	FB	always	PA PB	automatic system that detects and alerts the operators There is not	W1 W2 W3	< 1 failure per 10 years < 1 failure per year > 1 failure per year	

e.g. a failure provoking a damage of a magnet in the LHC accelerator would imply a **delay of more than 1 month**

ALEPCS 20

• Challenges:

- Define the tolerable risk for personnel and machine protection risk graph calibration
- Personnel protection: examples from IEC 61511-3:2016 Annex D or IEC 61508-5:2010 Annex E
- Machine protection (asset loss): corporative decision

	Consequence			Occupancy Possib. of avoidance			Prob. of failure		
CA	delay < few hours	FB	always	PA	automatic system that detects and alerts the operators	W1	< 1 failure per 10 years		
CB	few hours < delay < few days			PB	There is not	W2	< 1 failure per year		
CC	few days < delay < few weeks					W3	> 1 failure per year		
CD	delay > a month or cancellation of test program								

e.g. a failure provoking a damage of a magnet in the LHC accelerator would imply a **delay of more than 1 month**

- Adopted solutions:
 - FMEA + calibrated risk graph
 - Hazard and risk analysis and assessment report templates

3/8/2022

100 20000

Design a SIS compliant with the SRS (Safety Requirements Specification)

www.

Design a SIS compliant with the SRS (Safety Requirements Specification)

Challenges:

- 1. Design and engineering requirements:
 - Hardware Fault Tolerance (11.4)
 - Selection of the devices (11.5)
 - Hardware random failures (11.9)
 - Others (System behaviour on detection of a fault, field devices, interfaces, maintenance, etc.)

CALEPCS 20

IEC 61511-1:2016 Clause 11

Design a SIS compliant with the SRS (Safety Requirements Specification)

Challenges:

- 1. Design and engineering requirements: (
 - Hardware Fault Tolerance (11.4)
 - Selection of the devices (11.5)
 - Hardware random failures (11.9)
 - Others (System behaviour on detection of a fault, field devices, interfaces, maintenance, etc.)
- 2. Application program (AP) Requirements

IEC 61511-1:2016 Clause 12

IEC 61511-1:2016 Clause 11

Design a SIS compliant with the SRS (Safety Requirements Specification)

Challenges:

- 1. Design and engineering requirements: (
 - Hardware Fault Tolerance (11.4)
 - Selection of the devices (11.5)
 - Hardware random failures (11.9)
 - Others (System behaviour on detection of a fault, field devices, interfaces, maintenance, etc.)
- 2. Application program (AP) Requirements IEC 61511-1:2016 Clause 12
- 1. Factory Acceptance Test (FAT) requirements

IEC 61511-1:2016 Clause 13

IEC 61511-1:2016 Clause 11

CALEPCS 20

Design a SIS compliant with the SRS (Safety Requirements Specification)

Challenges:

- 1. Design and engineering requirements: IEC 61511-1:2016 Clause 11 Hardware Fault Tolerance (11.4) SIS req. Selection of the devices (11.5) Hardware random failures (11.9) Design and FAT Others (System behaviour on detection of a fault, field devices, engineering AP Req. Req. Req. interfaces, maintenance, etc.) Clause 13 Clause 11 Clause 12 Application program (AP) Requirements 2. IEC 61511-1:2016 Clause 12
- 1. Factory Acceptance Test (FAT) requirements

3/8/2022

IEC 61511-1:2016 Clause 13

CALEPCS 20

Verification

Management of

> safety and and plannin

functiona safety

assess

ment and auditing

ment of functional life-cycle structure

Clause 8

ection lave

Design and

risk reduction Clause 9

velopment of other means of

Clause 9

ecification for the safe instrumented system Clause 10

esion and engineering

Clauses 11 12 and 1

• Challenges:

wy.

CALEPCS 202

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function

CALEPCS 202

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree
 - Apply the tables and formulas from the standard

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree
 - Apply the tables and formulas from the standard

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree
 - Apply the tables and formulas from the standard

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree
 - Apply the tables and formulas from the standard

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree
 - Apply the tables and formulas from the standard

ALEPCS 20

- Challenges:
 - Collect the reliability data for each element of the Safety Instrumented Function
 - Build the reliability model (sensors + controller + actuators) : Reliability Block Diagram or Fault Tree
 - Apply the tables and formulas from the standard

ALEPCS 20

• Challenges:

wy.

ICALEPCS 202

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy

CALEPCS 202

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

CALEPCS 202

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Hardware Fault Tolerance IEC 61511-1:2016 Clause 11.4				
SIL	Minimun HFT			
1 (any mode)	0			
2 (low demand mode)	0			
2 (continuous mode)	1			
3 (high demand mode)	1			
or continuous mode)				
4 (any mode) 2				

HFT (Hardware Fault Tolerance)

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Hardware Fault Tolerance IEC 61511-1:2016 Clause 11.4			
SIL	Minimun HFT		
1 (any mode)	0		
2 (low demand mode)	0		
2 (continuous mode)	1		
3 (high demand mode)	1		
or continuous mode)			
4 (any mode)	2		

HFT (Hardware Fault Tolerance)

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Hardware Fault Tolerance IEC 61511-1:2016 Clause 11.4				
SIL	Minimun HFT			
1 (any mode)	0			
2 (low demand mode)	0			
2 (continuous mode)	1			
3 (high demand mode)	1			
or continuous mode)				
4 (any mode)	2			

HFT (Hardware Fault Tolerance)

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

IEC 61511-1:2016 Clause 11.4				
SIL	Minimun HFT			
1 (any mode)	0			
2 (low demand mode)	0			
2 (continuous mode)	1			
3 (high demand mode)	1			
or continuous mode)				
4 (any mode)	2			

Hardware Fault Tolerance

HFT (Hardware Fault Tolerance)

Architectural Constraints IEC 61508:2010-2 Clause 7.4.4 Route 1H or 2H

Redundancy is needed, if continuous mode

CALEPCS 202

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Hardware Fault IEC 61511-1:2016			Architectur IEC 61508-2:2010 (te 1H
SIL	Minimun HFT		SFF		HFT	
1 (any mode)	0	HFT (Hardware Fault Tolerance)		0	1	
(low demand mode)	0	SFF (Safe Failure Fraction)				
e (continuous mode)	1		SFF < 60%	SIL1	SIL2	SIL
(high demand mode)	1		$60\% \le SFF < 90\%$	SIL2	SIL3	SIL
r continuous mode)			$90\% \leq SFF < 99\%$	SIL3	SIL4	SIL
(any mode)	2		$SFF \ge 99\%$	SIL3	SIL4	SIL

Example for **type A** devices (without processor)

SIL3

SIL4

SIL4 SIL4

CALEPCS 202

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Hardware Fault IEC 61511-1:2016			Architectur IEC 61508-2:2010 (te 1H
SIL	Minimun HFT		SFF		HFT	
1 (any mode)	0	HFT (Hardware Fault Tolerance)		0	1	
2 (low demand mode)	0	SFF (Safe Failure Fraction)				4
2 (continuous mode)	1		SFF < 60%	SIL1	SIL2	SI
3 (high demand mode)	1		$60\% \le SFF < 90\%$	SIL2	SIL3	SI
or continuous mode)			$90\% \leq SFF < 99\%$	SIL3	SIL4	SI
4 (any mode)	2		$SFF \ge 99\%$	SIL3	SIL4	SI

Example for **type A** devices (without processor)

CALEPCS 20

3/8/2022

SIL3

SIL4

SIL4 SIL4

- Challenges:
 - Even if the prob. of failure is compliant with target SIL, we may need to apply redundancy
 - Use the reliability model (sensors + controller + actuators) and analyze the SIF architecture

Hardware Fault Tolerance IEC 61511-1:2016 Clause 11.4				
SIL	Minimun HFT			
1 (any mode)	0			
2 (low demand mode)	0			
2 (continuous mode)	1			
3 (high demand mode)	1			
or continuous mode)				
4 (any mode)	2			

HFT (Hardware Fault Tolerance) SFF (Safe Failure Fraction)

Architectural Constraints IEC 61508-2:2010 Clause 7.4.4 Route 1H					
SFF	HFT				
	0	1	2		
SFF < 60%	SIL1	SIL2	SIL3		
$60\% \le SFF < 90\%$	SIL2	SIL3	SIL4		
$90\% \le SFF < 99\%$	SIL3	SIL4	SIL4		
$SFF \ge 99\%$	SIL3	SIL4	SIL4		

Example for type A devices (without processor)

Redundancy is needed, if continuous mode

Redundancy is **not** needed, if SFF $\ge 60\%$ for type A devices

wy.

ICALEPCS 202

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

www.

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

www.

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

www.

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

3/8/2022

www.

ICALEPCS 2021

ERN

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

wing of

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

wing of

Adopted solution: Isograph's Reliability workbench (both for hardware random failures and architectural constraints)

wing of

wy.

CALEPCS 202

- Challenges:
 - Requirements to **design**, **implement** and **verify APs**

3/8/2022

IEC 61511-1: 2016 Clause 12

- Challenges:
 - Requirements to design, implement and verify APs
- IEC 61511-1: 2016 Clause 12

• **Guidelines** (examples and recommendations)

IEC 61511-2:2016 Annex B

CALEPCS 202

- Challenges:
 - Requirements to design, implement and verify APs

IEC 61511-1: 2016 Clause 12

Guidelines (examples and recommendations)

IEC 61511-2:2016 Annex B

"The traditional **text based approach of safety AP specification is not efficient** enough to handle the advanced, complex safety requirements commonly found in SIF specifications. The most efficient tool to address these challenges is the **Model-based design (MBD)**..."

- Challenges:
 - Requirements to design, implement and verify APs

IEC 61511-1: 2016 Clause 12

Guidelines (examples and recommendations)

IEC 61511-2:2016 Annex B

"The traditional **text based approach of safety AP specification is not efficient** enough to handle the advanced, complex safety requirements commonly found in SIF specifications. The most efficient tool to address these challenges is the **Model-based design (MBD)**..."

ALEPCS 20

- Challenges:
 - Requirements to design, implement and verify APs

IEC 61511-1: 2016 Clause 12

Guidelines (examples and recommendations)

IEC 61511-2:2016 Annex B

"The traditional **text based approach of safety AP specification is not efficient** enough to handle the advanced, complex safety requirements commonly found in SIF specifications. The most efficient tool to address these challenges is the **Model-based design (MBD)**..."

"... specification should be implemented in the graphical language of the model checking workbench environment...

- Challenges:
 - Requirements to design, implement and verify APs

IEC 61511-1: 2016 Clause 12

Guidelines (examples and recommendations)

IEC 61511-2:2016 Annex B

"The traditional **text based approach of safety AP specification is not efficient** enough to handle the advanced, complex safety requirements commonly found in SIF specifications. The most efficient tool to address these challenges is the **Model-based design (MBD)**..."

"... specification should be implemented in the graphical language of the model checking workbenchenvironment...

- Challenges:
 - Requirements to design, implement and verify APs

IEC 61511-1: 2016 Clause 12

Guidelines (examples and recommendations)

IEC 61511-2:2016 Annex B

"The traditional **text based approach of safety AP specification is not efficient** enough to handle the advanced, complex safety requirements commonly found in SIF specifications. The most efficient tool to address these challenges is the **Model-based design (MBD)**..."

- "... specification should be implemented in the graphical language of the model checking workbenchenvironment...
- Adopted solutions:

- Challenges:
 - Requirements to design, implement and verify APs

IEC 61511-1: 2016 Clause 12

Guidelines (examples and recommendations)

IEC 61511-2:2016 Annex B

"The traditional **text based approach of safety AP specification is not efficient** enough to handle the advanced, complex safety requirements commonly found in SIF specifications. The most efficient tool to address these challenges is the **Model-based design (MBD)**..."

- "... specification should be implemented in the graphical language of the model checking workbenchenvironment...
- Adopted solutions:
 - MBD for the **SRS** (Safety requirements Specification) **phase 3** = logic to be implemented in the PLC:
 - CEM (Cause and Effect Matrix) SISpec tool*
 - LD (Logic Diagrams) Grassedit tool*
 - Model Checking for the PLC program verification PLCverif tool*

*developed at CERN

SIS design and engineering – AP specification

wy.

ICALEPCS 202

SIS design and engineering – AP specification

CEM (Cause and Effect Matrix) - **SISpec** More details: <u>MOPHA041</u>

	Effect SIF1	Effect	PC1_PP
Cause		Cause	
COM_1	A1,A2,A3,A4	SIF1	NA1
CON_A	A1,A2,A3,A4		
TSH1	NA1	SIF2	NA1
TSH2	NA2	SIF3	
FSL1	NA3	SIF4	NA1
FSL2	NA4	PC1_OPER	A1

CALEPCS 202

SIS design and engineering – AP specification

Cause	Effect SIF1	Effec	t PC1_PP
COM_1	A1,A2,A3,A4	SIF1	NA1
CON_A	A1,A2,A3,A4	SIF2	NA1
TSH1	NA1		
TSH2	NA2	SIF3	
FSL1	NA3	SIF4	NA1
FSL2	NA4	PC1_OPER	A1

CEM (Cause and Effect Matrix) - **SISpec**

More details: MOPHA041

LD (Logic Diagrams) - Grassedit

Simulation, test and verification case generation and code generation is possible

m.

wing a

ICALEPCS 202

AP specification					
	Dec a) Top Operational CEM PC1_OPER	PC2_OPER		op Safety CEM feet PC1_PP	PC2_PP
L_PC1	A1,A2,A3,A4,A5	1	SIF1	NAL	i i
IPC2		Al	SIF2	NAI	
EST_A	Al		SIF3	1	NAI
EST_B	A2	Al	SIF4	NAI	NAI
EST_C EST_D	A3		PC1_OPER PC2_OPER	AI	Al
EST_E	A5 Bottom Operational CEN		(d) Bo	i ttom Safety CEM	
Cause	Effect TEST_A	TEST_B	Effec	t SIF1	SIF2
SEL_TEST_	A AI	1	COM_1	A1,A2,A3,/	14
SEL_TEST_	в	Al	CON_A	ALA2,A3,J	44
CRYO_A	A1		TSH1	NAI	
CRYO_B					
		A1	TSH2	NA2	
DAQ_A DAQ_B	Al		TSH2 FSL1 FSL2	NA2 NA3	

AP verification

CALEPCS 202

SISp

TEST F TEST_C TEST D TEST_E SEL TEST / SEL_TEST_B CRYO A CRYO_B DAQ_A DAQ_B

AP development

AP verification

DAQ B

FSL2

wy.

CALEPCS 202

NA4

<u> </u>

wing of

ERN

wing of

CALEPCS 2021

wing of

m.

www.

ICALEPCS 2021

- Challenges:
 - Define the roles and responsibilities of the project members

3/8/2022

Define the workflow and documentation to coordinate all project members

- Challenges:
 - Define the roles and responsibilities of the project members
 - Define the workflow and documentation to coordinate all project members
- Adopted solutions:
 - Definition of roles and responsibilities ongoing work (example below)
 - Report templates

CALEPCS 20

Functional Safety projects workflow – ongoing work

- Challenges:
 - Define the roles and responsibilities of the project members
 - Define the workflow and documentation to coordinate all project members
- Adopted solutions:
 - Definition of roles and responsibilities ongoing work (example below)
 - Report templates
 - Functional Safety projects workflow ongoing work

Role	Responsibilities
Functional Safety (FS) expert	Apply the FS standards
Process expert	Process knowledge and risk analysis
Instrumentation and controls expert	Design and implementation of the safety system
Departmental Safety Officer (DSO)	Risk graph calibration and safety support
Health & Safety and Environmental Protection (HSE) unit representative	Safety support and safety audits

- Challenges:
 - Define the roles and responsibilities of the project members
 - Define the workflow and documentation to coordinate all project members
- Adopted solutions:
 - Definition of roles and responsibilities ongoing work (example below)
 - Report templates
 - Functional Safety projects workflow ongoing work

	Role	Responsibilities	
	Functional Safety (FS) expert	Apply the FS standards	
	Process expert	Process knowledge and risk analysis	
Instrumentation and controls expert		Design and implementation of the safety system	n
Departmental Safety Officer (DSO)		Risk graph calibration and safety support	
Health & Safety and Environmental Protection (HSE) unit representative		Safety support and safety audits	

Conclusions:

wing of

Conclusions:

 We have integrated new tools to the safety life-cycle

Safety life-cycle phase	Tools	Methods	Report templates
H&R assessment	-	FMEA and calibrated risk graph	Risk assessment report
SRS	SISpec and Grassedit	CEM and Logic Diagrams	SRS report
Design and engineering	Isograph, PLCverif and UNICOS (future work)	FTA, RBD, model checking and FAT	Design and verification report
Validation	-	-	Proof test
Management	-	-	FSA and safety manual
SRS Design and engineering Validation	SISpec and Grassedit Isograph, PLCverif and UNICOS (future work)	CEM and Logic Diagrams FTA, RBD, model checking and FAT -	SRS report Design and verification rep Proof test

wy.

ICALEPCS 202

Conclusions:

- We have **integrated new tools** to the safety life-cycle
- We are now applying recommended methods from IEC 61511

Tools	Methods	Report templates
-	FMEA and calibrated risk graph	Risk assessment report
SISpec and Grassedit	CEM and Logic Diagrams	SRS report
Isograph, PLCverif and UNICOS (future work)	FTA, RBD, model checking and FAT	Design and verification report
-	-	Proof test
Ξ	-	FSA and safety manual
	- SISpec and Grassedit Isograph, PLCverif and	-FMEA and calibrated risk graphSISpec and GrasseditCEM and Logic DiagramsIsograph, PLCverif and UNICOS (future work)FTA, RBD, model checking and FAT

CALEPCS 202

Conclusions:

- We have **integrated new tools** to the safety life-cycle
- We are now applying recommended methods from IEC 61511
- We have created report templates

Tools	Methods	Report templates
-	FMEA and calibrated risk graph	Risk assessment report
SISpec and Grassedit	CEM and Logic Diagrams	SRS report
Isograph, PLCverif and UNICOS (future work)	FTA, RBD, model checking and FAT	Design and verification report
-	-	Proof test
	-	FSA and safety manual
	- SISpec and Grassedit Isograph, PLCverif and UNICOS (future work) -	- FMEA and calibrated risk graph SISpec and Grassedit CEM and Logic Diagrams Isograph, PLCverif and UNICOS (future work) FTA, RBD, model checking and FAT

CALEPCS 20

Conclusions:

- We have **integrated new tools** to the safety life-cycle
- We are now applying recommended methods from IEC 61511
- We have created report templates

Future work:

- Traceability (explore commercial tools)
- Workflow procedures
- Code generation of application programs
- Integration in our frameworks (e.g. <u>UNICOS</u>)

Safety life-cycle phase Tools		Methods	Report templates
H&R assessment	-	FMEA and calibrated risk graph	Risk assessment report
SRS	SISpec and Grassedit	CEM and Logic Diagrams	SRS report
Design and engineering	Isograph, PLCverif and UNICOS (future work)	FTA, RBD, model checking and FAT	Design and verification report
Validation	-	-	Proof test
Management	-	-	FSA and safety manual

home.cern