Keyword: positron
Paper Title Other Keywords Page
TUPG29 The Frascati LINAC Beam-Test Facility (BTF) Performance and Upgrades linac, target, electron, dipole 395
 
  • B. Buonomo, D.G.C. Di Giulio, L.G. Foggetta
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  Funding: Supported by the H2020 project AIDA-2020, GA no. 654168
In the last 11 years, the Beam-Test Facility (BTF) of the Frascati DAΦNE accelerator, gained an important role in the development of particle detectors. e- or e+ beams can be extracted to a dedicated transfer line, where a target plus a dipole and collimator, can attenuate and select secondary particles in a narrow p (<1%) band. BTF can provide tuneable beams in a wide range of: energy (to 750 MeV/540 MeV for e/e+), charge (up to 1010 e/bunch) and pulse length (1.4-40 ns) up to 49 Hz rep. rate. Beam spot and divergence can be adjusted, down to sub-mm sizes and 2 mrad. Photons can be produced on a target, and energy-tagged inside the dipole by Si micro-strip detectors. A shielded W target is used for neutron production: about 8 10-7/pr, 1 MeV n are produced. 200 beam days are delivered to about 20 groups/year. A dedicated experiment PADME for the search of light dark matter, like dark photons, ALPs, etc., was approved aiming at a sensitivity up to m=26 MeV/c2. An upgrade program of the facility is proposed, along 3 lines: consolidation of the LINAC, in order to guarantee a stable operation in the longer term; upgrade of the energy up to 1 GeV; doubling of the BTF beam-lines.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPG59 Bunch Extension Monitor for LINAC of SPIRAL2 Project linac, ion, detector, diagnostics 486
 
  • R.V. Revenko, J.L. Vignet
    GANIL, Caen, France
 
  A semi-interceptive monitor for bunch shape measure-ment has been developed for the LINAC of SPIRAL2. A Bunch Extension Monitor (BEM) is based on the registra-tion of X-rays emitted by the interaction of the beam ions with a thin tungsten wire. The time difference between detected X-rays and accelerating RF gives information about distribution of beam particles along the time axis. These monitors will be installed inside diagnostic boxes on the first five warm sections of the LINAC. The monitor consists of two parts: X-ray detector and mechanical system for positioning the tungsten wire into the beam. Emitted X-rays are registered by microchannel plates with fast readout. Signal processing is performed with constant fraction discriminators and TAC coupled with MCA. Results of bunch shape measurements obtained during commissioning of RFQ for SPIRAL2 are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG59  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBL04 The New Optical Device for Turn to Turn Beam Profile Measurement electron, diagnostics, storage-ring, betatron 593
 
  • V.L. Dorokhov
    BINP, Novosibirsk, Russia
  • A.D. Khilchenko, A.I. Kotelnikov, A.N. Kvashnin, O.I. Meshkov, P.V. Zubarev
    BINP SB RAS, Novosibirsk, Russia
  • V. Korchuganov, A.I. Stirin, A.G. Valentinov
    NRC, Moscow, Russia
 
  The electron beam quality determines the main synchrotron radiation characteristics therefore beam diagnostics is of great importance for synchrotron radiation source performance. The real-time processing of the electron beam parameters is a necessary procedure to optimize the key characteristics of the source using feedback loops. The frequency of electron beam cycling in the synchrotron storage ring is about 1 MHz. In multi-bunch mode electrons are grouped into a series of bunches. The bunch repetition frequency depends on the total number of bunches and usually reaches hundreds of MHz. The actual problem is to study the separate bunch dimensions behavior under multi-bunch beam instabilities. To solve this problem a turn-to-turn electron beam profile monitor is developed for Siberia-2 synchrotron light source. The linear avalanche photodiodes array is applied to imaging. The apparatus is able to record a transversal profile of selected bunches and analyze the dynamics of beam during 106 turns. The recent experimental results obtained with the diagnostics are described.  
slides icon Slides WEBL04 [4.282 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEBL04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG73 A Hardware and Software Overview on the New BTF Transverse Profile Monitor software, detector, timing, linac 818
 
  • B. Buonomo, D.G.C. Di Giulio, L.G. Foggetta
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  Funding: Supported by the H2020 project AIDA-2020, GA no. 654168
In the last 11 years, the Beam-Test Facility (BTF) of the DAΦNE accelerator complex, in the Frascati laboratory, has gained an important role in the EU infrastructures devoted to the development of particle detectors. The facility can provide runtime tuneable electrons and positrons beams in a range of different parameters: energy (up to 750 MeV for e- and 540 MeV for e+), charge ( up to 1010 e /bunch) and pulse length (1.4-40 ns). The bunch delivering rate is up to 49 Hz and the beam spot and divergence can be adjusted, down to sub-mm sizes and 2 mrad, in order to achieve user needs. In these paper we are going to describe the new implementation of the secondary BTF beam transverse monitor systems based on WIDEPIX FITPIX detectors, operating in bus synchronization mode externally timed to BTF beams. Our software layout includes a data producer, a live-data display consumer and a MEMCACHED caching server. This configuration offers to BTF users a vary fast approach to the transverse data using TCP/IP calls to MEMCACHED with an easy and fast software integration on users DAQ. The data packing permits also to avoid the needs of mixed (user vs BTF) hardware synchronization.
 
poster icon Poster WEPG73 [3.267 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG73  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)