Keyword: coupling
Paper Title Other Keywords Page
WECO03 Transverse Coupling of Ion Beams From an RCR Ion Source ion, emittance, extraction, solenoid 76
 
  • Y. Yang, Y. Liu, L.T. Sun, Y.J. Yuan, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  ECR ion source beam quality will deteriorate under the influence of beam transverse coupling and high-order magnetic field aberration. Ion beams from an ECR ion source will experience a descending axial magnetic field at the extraction region, leading to a strong transverse coupling to the extracted beam, with projection emittance growth both in horizontal and vertical and two eigen emittances separation. On the other hand, sextupole field in the ECR and the sextupole component in the analyzing dipole can also degrade the beam quality by resulting in beam distortion. Proper adjusting of the extraction field strength of the ion source and the pre-focusing solenoid field can help to weaken the correlation in the inter-plane phase spaces and reduce the projection emittances. Another approach to improve the beam quality is to compensate for the high-order magnetic fields. This paper presents the property of beam coupling in the transverse phase space by analytical theory and simulations. Some experimental results are also presented and discussed. In addition, a high-order compensation scheme is displayed, whose feasibility has been verified by preliminary tests with SECRAL at IMP.  
slides icon Slides WECO03 [5.500 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-WECO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP09 Development of a New Compact 5.8 GHz ECR Ion Source ion, plasma, ECR, ion-source 101
 
  • J. Angot, L. Bonny, J. Jacob, T. Lamy, P. Sole, T. Thuillier, F. Villa
    LPSC, Grenoble Cedex, France
  • P. Sortais
    Polygon Physics, Grenoble, France
 
  LPSC is developing a new 5.8 GHz compact ion source to produce low charge state ion beams and study their capture in the PHOENIX charge breeder. The source was designed to meet criteria like stability, compactness and low cost. It is mounted on a DN200 iso K flange and is fully under vaccum during operation. The technology brings modularity to ease the development. It can operate up to 60 kV. The plasma is heated by a 100W solid state amplifier. The ECRIS produces 1 mA of H+ beam with 20W of HF and low charge state Argon ions. It was tested under several microwave and magnetic configurations on a test bench equipped with a mass spectrometer and diagnostics. Given its excellent performances, this source is being installed to drive the accelerator based neutron source, GENEPI 2, at LPSC. The developments of the source together with the results of the experiments will be presented. Future plans for this ion source will also be discussed. This work was supported by the ERA-NET NuPNET in the frame of the EMILIE project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-WEPP09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)