

Study of ion beam extraction from an ECRIS: Beam transverse coupling and high-order compensation

Yao Yang

Y. Liu, X. Fang, C. Qian, Y. C. Feng, Y. Cao, Y. J. Yuan, L. T. Sun, X. Z. Zhang, H. W. Zhao

Institute of Modern Physics, CAS, 730000, Lanzhou, China

Backgrounds

Transverse coupling

- Coupling induced during beam extraction
- Coupling effect of a solenoid
- High-order compensation
 - High-order magnetic fields
 - High-order compensation for SECRAL and preliminary results
- An improved design of Q/A selector
- Summary and outlook

Beam properties from ECR ion sources

IMP

Y. Yang, ECRIS2016, Busan

Thermal contribution:

$$\varepsilon_{ther} = 0.016 \cdot R_{extr} \cdot \sqrt{\frac{kT_i}{M/Q}}$$

Magnetic contribution:

$$\varepsilon_{mag} = 0.032 \cdot (R_{extr})^2 \cdot (\frac{B_{extr}}{M/Q})$$

For most ECR ion sources:

$$\mathcal{E}_{mag} >> \mathcal{E}_{ther}$$

Asymmetric beam and transverse coupling will make the beam emittance worse!

Projection RMS and eigen-emittances

Beam second moment matrix:

$$C = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix}$$

Projection RMS emittances:

$$\mathcal{E}_{x} = \sqrt{\langle xx \rangle \langle x'x' \rangle - \langle xx' \rangle^{2}}$$
$$\mathcal{E}_{y} = \sqrt{\langle yy \rangle \langle y'y' \rangle - \langle yy' \rangle^{2}}$$

4D-emittance:

$$\varepsilon_{4d} = \sqrt{\det(C)}$$

Coupling between horizontal and vertical planes results in:

$$\mathcal{E}_{4d} = \mathcal{E}_1 \cdot \mathcal{E}_2 \leq \mathcal{E}_x \cdot \mathcal{E}_y$$

equality just for zero interplane coupling moments. Eigen-emittances: $\varepsilon_{1} = \frac{1}{2} \sqrt{-tr[(CJ)^{2}] + \sqrt{tr^{2}[(CJ)^{2}] - 16 \det(C)}}$ $\varepsilon_{2} = \frac{1}{2} \sqrt{-tr[(CJ)^{2}] - \sqrt{tr^{2}[(CJ)^{2}] - 16 \det(C)}}$ $J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Coupling induced during beam extraction

BEAM

IMP

Particles are extracted and accelerated in a semi-solenoid magnetic field.

Assuming a very short solenoid:

$$R_{out} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -\kappa & 0 \\ 0 & 0 & 1 & 0 \\ \kappa & 0 & 0 & 1 \end{bmatrix} \quad \kappa = \frac{B_{extr}}{2(B\rho)} \quad C_0 = \begin{bmatrix} \varepsilon\beta & 0 & 0 & 0 \\ 0 & \frac{\varepsilon}{\beta} & 0 & 0 \\ 0 & 0 & \varepsilon\beta & 0 \\ 0 & 0 & 0 & \frac{\varepsilon}{\beta} \end{bmatrix}$$

$$C_{1} = R_{out}C_{0}R_{out}^{T} = \begin{bmatrix} \varepsilon\beta & 0 & 0 & \kappa\varepsilon\beta \\ 0 & \frac{\varepsilon}{\beta} + \kappa^{2}\varepsilon\beta & -\kappa\varepsilon\beta & 0 \\ 0 & -k\varepsilon\beta & \varepsilon\beta & 0 \\ \kappa\varepsilon\beta & 0 & 0 & \frac{\varepsilon}{\beta} + \kappa^{2}\varepsilon\beta \end{bmatrix}$$

$$\varepsilon_x = \varepsilon_y = \sqrt{\varepsilon\beta(\frac{\varepsilon}{\beta} + \kappa^2\varepsilon\beta)} \quad \varepsilon_{1,2} = \varepsilon_x \pm \kappa\varepsilon\beta$$

Ion beam is transversely coupled!

Beam extraction simulation for SECRAL

¹²⁹Xe²⁹⁺, 25 kV, B_{ext}=1.35 T @ IBsimu with the magnetic field

IMP

8

Beam extraction simulation for SECRAL

¹²⁹Xe²⁹⁺, 25 kV, B_{ext}=1.35 T @ IBsimu with the magnetic field

9

Beam emittances VS B_{ext}

IM.

The projection emittances do not increase with the magnetic field strength proportionally as expected;

□ Optimal field (B_{extr} =2.03 T) → The coupling is relatively weak.

- ε_{x,y} reaches minimum;
- the value of $\varepsilon_x^* \varepsilon_y$ is closest to $\varepsilon_1^* \varepsilon_2$;
- the difference between ε_1 and ε_2 is smallest.

B_{ext} effect on beam formation

IMP

$$\varepsilon_{x} = \varepsilon_{y} = \sqrt{\varepsilon\beta(\frac{\varepsilon}{\beta} + \kappa^{2}\varepsilon\beta)}$$
$$\varepsilon_{1,2} = \varepsilon_{x} \pm \kappa \varepsilon\beta$$

Magnetic field in the extraction region determine the beam emittances and the transverse coupling by
 Adding a azimuthal momentum to the beam.
 Affecting the beam formation.

Beam emittances VS B_{ext}

IMP

Emittance measurement for RIKEN 28GHz SC-ECRIS

Presented in ICIS'15 by Y. Higurashi from RIKEN

Coupling effect of a solenoid

Beam emittance measurement for SECRAL

Transfer matrix of a solenoid

$$R_{sol} = \begin{bmatrix} \cos^{2}(kz) & \sin(2kz)/2k & \sin(2kz)/2 & \sin^{2}(kz)/k \\ -k\sin(2kz)/2 & \cos^{2}(kz) & -k\sin^{2}(kz) & \sin(2kz)/2 \\ -\sin(2kz)/2 & -\sin^{2}(kz)/k & \cos^{2}(kz) & \sin(2kz)/2k \\ k\sin^{2}(kz) & -\sin(2kz)/2 & -k\sin(2kz)/2 & \cos^{2}(kz) \end{bmatrix}$$

$$R_{sol} = \begin{bmatrix} \cos(kz) & \sin(kz)/k & 0 \\ -k\sin(kz) & \cos(kz) & 0 \\ 0 & \cos(kz) & \sin(kz)/k \\ 0 & -k\sin(kz) & \cos(kz) \end{bmatrix} \begin{bmatrix} \cos(kz) & 0 & \sin(kz) & 0 \\ 0 & \cos(kz) & 0 & \sin(kz) \\ -\sin(kz) & 0 & \cos(kz) & 0 \\ 0 & -\sin(kz) & 0 & \cos(kz) \end{bmatrix}$$
Focusing
Rotation

 $k = \frac{1}{2}B_0 / B\rho_s$

Beam rotation angle in a solenoid: $\Theta = \kappa L_{eff} = \frac{B_{max}}{2(B\rho)}L_{eff}$

Non-round beam through a solenoid

Coupling effect of a solenoid

The rotation effect of a solenoid field brings a periodic coupling to a non-round beam.

When $\Theta = n \cdot \frac{\pi}{2}$ $n = 0, \pm 1, \pm 2, \pm 3, \cdots$ the beam is uncoupled.

Horizontal and vertical planes exchange while $n = \pm 1, \pm 3, \pm 5, \cdots$

With regard to the experimental result with SECRAL:

- Ion beam extracted from the ECR ion source is not round.
- The solenoid after the ion source could disentangle the coupling (when I_{solenoid}= -180A) by compensating the beam rotation (not rotational momentum) created by the semi-solenoid field in the extraction region.
- However, the coupling induced during beam extraction can not be removed unless in an opposite magnetic field of the same the particles experienced while they were extracted or by using a skew quadrupole (or a skew triplet).

Sextupole compensation for SECRAL

Experimental setup

An improved design of Q/A selector

- Magnetic field in the extraction region determine the beam emittances and the transverse coupling by adding a azimuthal momentum to the beam & affecting the beam formation.
- A solenoid can lead to periodic coupling for an initially nonround beam due to its rotation effect.
- Experiments have verified the validity of sextupole compensation, but it is vital to create correct phase space orientation at the location of the sextupole.
- Using TWO SOLENOIDs in the Q/A selector could be an improved scheme.

- Beam quality measurements using a pepper-pot scanner are very essential.
- Further experiments on high-order compensation are planned.
- Improved scheme by using TWO SOLENOIDs to create a right beam rotation angle should be verified by detailed simulations.

Thanks for your attention! 谢谢!

An improved design of Q/A selector

An improved design of Q/A selector

TWO SOLENOIDS:

IM

- Optics match for a wide range of ion beam species with different intensities.
- Improve the ion seperation by reducing the beam size at the focal plane for intense heavy ion beams.
- \checkmark Creat a rihgt beam rotation angle
 - Transverse coupling decorrelation.
 - Correct phase space orientation for sextupole compensation

I₀: 15 emA; I_{U34+}: 2 emA HV: 50 kV; SCC: 70%

