05 Beam Dynamics and Electromagnetic Fields

D04 Instabilities - Processes, Impedances, Countermeasures

Paper Title Page
TUPC010 Single Bunch Studies at the Australian Synchrotron 1062
 
  • R. T. Dowd, M. J. Boland, G. LeBlanc, M. J. Spencer, Y. E. Tan
    ASP, Clayton, Victoria
 
  Studies using a single high charge electron bunch have been conducted at the Australian Synchrotron to characterise the impedance of the machine at various stages of commissioning and insertion device configuration. This paper will present the results of these studies and show the time evolution of machine impedance with increasing number of insertion devices.  
TUPP018 Impact of Electromagnetic Fields in TESLA RF Modules on Transverse Beam Dynamics 1568
 
  • E. Prat, W. Decking, M. Dohlus, T. Limberg, I. Zagorodnov
    DESY, Hamburg
 
  Transverse electric fields in TESLA rf modules exist on one hand because of deformations of the longitudinal accelerating field in the presence of rf structure misalignments or in the vicinity of asymmetrically machine parts like input couplers. On the other hand, the beam itself induces transverse wake fields if it does not travel through the center of a perfectly rotationally symmetric structure. Transverse deflecting fields deflect beam particles. The average deflection causes a change in the beam trajectory; the phase dependence of the transverse field leads to a variation of the transverse kick along the longitudinal position of the bunch and thus in general to a change in projected emittance. If the strength of the transverse field component varies along the transverse direction itself, slice emittance will be also affected. We will present the amplitudes and spatial variations of transverse fields generated by the mechanisms described above, and discuss their impact on beam trajectories and shape.  
TUPP019 Wakefield and RF Kicks due to Coupler Asymmetry in TESLA-type Accelerating Cavities 1571
 
  • K. L.F. Bane, C. Adolphsen, Z. Li
    SLAC, Menlo Park, California
  • M. Dohlus, I. Zagorodnov
    DESY, Hamburg
  • E. Gjonaj, T. Weiland
    TEMF, Darmstadt
  • I. G. Gonin, A. Lunin, N. Solyak, V. P. Yakovlev
    Fermilab, Batavia, Illinois
 
  In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate asymmetries in the fields that will kick the beam and tend to degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental and higher mode couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetries in) the fundamental RF fields and the other, due to transverse wakefields that are generated even when the beam is on axis. For the ILC configuration we numerically and analytically study both types of kicks and their effect on beam emittance. For the wakefield effect this is quite challenging since the bunches are very short (rms length of 300 microns), the cavity is very long (~1 m), and the distance to steady-state is even longer (~6 m). Finally, we study changes in the coupler design that can greatly reduce the effect.  
TUPP020 Analysis of Collective Effects at the Diamond Storage Ring 1574
 
  • R. Bartolini, C. Christou, R. T. Fielder, M. Jensen, A. F.D. Morgan, S. A. Pande, G. Rehm, C. A. Thomas
    Diamond, Oxfordshire
 
  The Diamond storage ring has achieved its nominal operating current of 300 mA in multi-bunch mode and up to 10 mA in single bunch mode. Several collective instabilities have been observed and their dependence on machine parameters such as chromaticities, RF voltage and fill pattern have been investigated. We report here the analysis of the observed current thresholds and rise times of the instabilities compared with analytical estimates and tracking simulations. We also present the results of the MAFIA simulations performed with the aim of understanding the main contribution to the impedance of the ring and establishing a machine impedance database.  
TUPP022 Measurements of Broad Band Impedance Related Longitudinal Properties of Electron Bunches at DELTA 1577
 
  • R. Burek, H. Huck, G. Schmidt, T. Weis, K. Wille
    DELTA, Dortmund
 
  DELTA is a 1.5 GeV synchrotron light source which can be operated also at 550 MeV for FEL experiments. Due to interactions with the vacuum chamber, the beam induces wake fields, which act back on the beam and result in a disturbed bunch profile because of potential well distortion and turbulent bunch lengthening. These interactions limit the obtainable bunch length and achievable peak current and therefore strongly affect the FEL-operation. Recent results obtained by streak camera measurements have shown that for short bunches with maximum bunch lengths of 40 ps the longitudinal broad band impedance has to be scaled (SPEAR-scaling) to explain the measurements. The broad band impedance fits well to impedance measurements and calculations performed throughout the last years. The energy spread related to the bunch lengthening has been measured by analysing the undulator spectrum.  
TUPP023 Direct Detection of the Electron Cloud at ANKA 1580
 
  • S. Casalbuoni, A. W. Grau, M. Hagelstein, A.-S. Müller
    FZK, Karlsruhe
  • U. Iriso
    ALBA, Bellaterra
  • E. M. Mashkina
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
  Low energy electrons generated by the interaction of high energy particles with the beam pipe surface can be detrimental for accelerators performances increasing the vacuum pressure, the heat load and eventually producing beam instabilities. The low energy electrons accumulating in the beam pipe are often referred to as electron cloud. In this presentation we report on the direct evidence of the electron cloud in the electron storage ring of the synchrotron light source ANKA (ANgstrom source KArlsruhe).  
TUPP024 Electron Cyclotron Resonances in Electron Cloud Dynamics 1583
 
  • C. M. Celata, M. A. Furman, J.-L. Vay, J. W. Yu
    LBNL, Berkeley, California
 
  We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code “POSINST” was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. At magnetic field values, B, for which the bunch frequency is an integral multiple of the electron cyclotron frequency an enhancement of up to a factor of 3 in the electron cloud equilibrium density was found. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~ (2πme/elb), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. We believe this accounts for the fact that this resonance has not been reported before in the electron cloud literature. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics will be discussed, along with results from 3D simulations.  
TUPP025 Preliminary Impedance Budget for the TPS Storage Ring 1586
 
  • A. Rusanov
    NSRRC, Hsinchu
 
  Taiwan Photon Source (TPS) is a new third generation low-emittance synchrotron storage ring which will be built at the present site of the NSRRC in Hsinchu, Taiwan. Preliminary results of the ongoing impedance studies of the TPS are presented in this paper. The overall impedance of the vacuum chamber has been evaluated with focus on the longitudinal broad-band impedance, which can lead to bunch lengthening and microwave instability. Wakepotentials and impedances produced by each component of the storage ring have been evaluated by using 3D electromagnetic code GdfidL. Then longitudinal loss factor, longitudinal broad-band impedance and transverse kick factors were computed. Results are summarized in the table. Numerically obtained data is compared to analytical results for simplified geometries of the vacuum chamber components.  
TUPP026 Impedance of Ultrarelativistic Charged Distributions in Tapering Geometries 1589
 
  • D. A. Burton, D. C. Christie, R. W. Tucker
    Lancaster University, Lancaster
 
  We develop a scheme for obtaining the impedance, at any frequency, of a gradually tapered geometry of arbitrary cross-section containing a bunch of arbitrary profile travelling at the speed of light parallel to the axis of the taper. Coordinate-free expressions for Maxwell's equations are 2+2-split in a coordinate system adapted to the particle beam and the taper and, using an asymptotic expansion for a gradual taper, a coupled hierarchy of Poisson equations are obtained. Applications of the scheme are presented.  
TUPP027 Electron Energy Dependence of Scrubbing Efficiency to Mitigate E-cloud Formation in Accelerators 1592
 
  • R. Cimino, M. Commisso, T. Demma, A. G. Grilli, P. Liu, M. Pietropaoli, V. Sciarra
    INFN/LNF, Frascati (Roma)
  • V. Baglin
    CERN, Geneva
  • P. Barone, A. Bonanno
    INFN Gruppo di Cosenza, Arcavacata di Rende (Cosenza)
 
  Recently built and planned accelerators, base their ability to reach design parameters, on the capability to reduce Secondary Electron Yield (SEY) during commissioning, hence mitigating the potentially detrimental effects of e-cloud driven machine limitations. This SEY reduction (called "scrubbing"), is due to the fact that the electrons of the cloud, hit the vacuum chamber wall, modifying its surface properties and reducing its SEY. This minimise any disturbing effects of the e-cloud to the beam. "Scrubbing" has been studied only as a function of impinging electron dose. In reality SEY modifications are only studied by bombarding surfaces with 300-500 eV electrons, but no scrubbing dependence on the bombarding electron energy has ever been discussed. The actual energy of the electrons of the cloud hitting the wall in real accelerators has never been measured accurately, while simulations predict very low electron energies (<50 eV). For this reason and given the peculiar behaviour observed for low energy electrons*, we decided to study this dependence accurately. Here we present some preliminary results discussing eventual implications to machine commissioning procedures.

*R. Cimino et al. Phys. Rev. Lett 93, 14801 (2004).

 
TUPP028 Bunch Length and Impedance Measurements at SPEAR3 1595
 
  • W. J. Corbett, W. X. Cheng, A. S. Fisher, X. Huang
    SLAC, Menlo Park, California
 
  A series of bunch length measurements have been made for different lattice configurations in SPEAR3 as a function of single-bunch current. The lattices include achromatic optics, low-emittance optics and short-bunch, low-momentum compaction optics (low-alpha). The streak-camera data clearly demonstrates effects of both resistive and reactive chamber impedance and shows levels of microwave instability threshold. In the low-alpha mode, signs of bunch length ‘bursting’ were observed. Fitted bunch-profile data, impedance calculations and bursting data are presented.  
TUPP029 Beam Coupling Impedance Measurement and Mitigation for a TOTEM Roman Pot 1598
 
  • M. Deile, F. Caspers, T. Kroyer, M. Oriunno, E. Radermacher, A. Soter
    CERN, Geneva
  • F. Roncarolo
    UMAN, Manchester
 
  The longitudinal and transverse beam coupling impedance of the first final TOTEM Roman Pot unit has been measured in the laboratory with the wire method. For the evaluation of transverse impedance the wire position has been kept constant, and the insertions of the RP were moved asymmetrically. With the original configuration of the RP, resonances with fairly high Q values were observed. In order to mitigate this problem, RF-absorbing ferrite plates were mounted in appropriate locations. As a result, all resonances were sufficiently damped to meet the stringent LHC beam coupling impedance requirements.  
TUPP030 A Formula for the Electron Cloud Map Coefficient in the Presence of a Magnetic Field 1601
 
  • T. Demma
    INFN/LNF, Frascati (Roma)
  • S. Petracca
    U. Sannio, Benevento
 
  The evolution of the electron density during multibunch electron cloud formation can be reproduced using a bunch-to-bunch iterative map formalism. The reliability of this formalism has been proved for RHIC* and LHC**. The coefficients that parameterize the map function are readily obtained by fitting the results of compute-intensive electron cloud simulations. An analytic expression for the linear map coefficient that describes weak cloud behaviour from first principles has been derivied for the case of staight sections of RHIC***. In this paper we generalize the model presented in *** to the case of electron cloud evolution in presence of a dipolar magnetic field and compare the results with numerical simulations.

*U. Iriso and S. Pegg. Phys. Rev. ST Accel. Beams 9, 071002 (2006).
**T. Demma et al. Phys. Rev. ST Accel. Beams 10,114401 (2007).
***U. Iriso and S. Pegg. Proc. of EPAC06, pp. 357-359.

 
TUPP031 Electron Cloud Simulations for DAΦNE 1604
 
  • T. Demma, R. Cimino, S. Guiducci, C. Vaccarezza, M. Zobov
    INFN/LNF, Frascati (Roma)
 
  After the first experimental observations compatible with the presence of the electron cloud effect in the DAΦNE positron ring, a systematic study has been performed regarding the electron cloud build-up. To assess the effects of the electron cloud, simulations of the cloud build up were carried out using ECLOUD. In particular, we discuss modifications to the secondary emission model, build up for various filling patterns and different wiggler magnetic field models. The obtained numerical results are compared with experimental observations.  
TUPP032 Trajectory Jitter and Single Bunch Beam Break Up Instability 1607
 
  • S. Di Mitri, P. Craievich
    ELETTRA, Basovizza, Trieste
  • M. Borland
    ANL, Argonne, Illinois
  • A. Zholents
    LBNL, Berkeley, California
 
  This paper addresses stability issues related to control of the beam break up (BBU) instability in the FERMI@Elettra linac using local trajectory bumps. Analytical study and simulations using the Elegant code are presented. Three different parameters have been used to characterize the BBU, i.e. the projected emittance, the bunch head-to-tail deviation, and the Courant-Snyder invariant for the slice centroid. It is shown that shot-to-shot trajectory jitter in the injector affects the efficiency of the control of the BBU.  
TUPP033 Alternative Scheme of Bunch Length Compression in Linacs for Free Electron Lasers 1610
 
  • S. Di Mitri, M. Cornacchia, S. V. Milton, S. Spampinati
    ELETTRA, Basovizza, Trieste
 
  The aim of this paper is to investigate the effect of an alternative scheme of bunch compression on the development of the microbunching instability. Two cases have been considered, one in the presence of a linear energy chirp at the compressor end and another without it. It is shown that after removing the linear energy chirp, a properly tuned R56 transport matrix element is able to dilute the initial energy modulation without affecting the bunch length and to damp the associated current spikes. A by-product of this study indicates that the global compression scheme can be further optimized in the direction of a double compression scheme in which the longitudinal Landau damping is enhanced by increasing the compression factor of the first compressor while reducing that of the second one. The limiting case of such a configuration is the single compression scheme at low energy. The study is based on analytical calculations and on the simulation code LiTrack.  
TUPP034 Transverse Effects due to Vacuum Mirror of RF Gun 1613
 
  • I. Zagorodnov, M. Dohlus, M. Krasilnikov
    DESY, Hamburg
  • E. Gjonaj, S. Schnepp
    TEMF, Darmstadt
 
  The transverse kick due to the vacuum mirror in the RF gun can negatively affect the beam emittance. In this contribution we estimate numerically and analytically the transverse wake function of European XFEL RF gun and apply it in beam dynamics studies of the transverse phase space.  
TUPP035 Analysis of Intensity Instability Threshold at Transition in RHIC 1616
 
  • W. Fischer, I. Blackler, M. Blaskiewicz, P. Cameron, C. Montag, V. Ptitsyn, T. Roser
    BNL, Upton, Long Island, New York
 
  The beam intensity of ion beams in RHIC is limited by a fast transverse instability at transition, driven by the machine impedance and electron clouds. For gold and deuteron beams we analyze the dependence of the instability threshold on beam and machine parameters from recent operational data and dedicated experiments. We fit the machine impedance to the experimental data.  
TUPP036 "Scrubbing" Process of Cu Surfaces Induced by Electron Bombardment 1619
 
  • D. R. Grosso, P. Barone, A. Bonanno, M. Camarca, M. Commisso, A. Oliva, F. Xu
    INFN Gruppo di Cosenza, Arcavacata di Rende (Cosenza)
  • R. Cimino
    INFN/LNF, Frascati (Roma)
 
  Energy distribution curves of electrons emitted from accelerator used metal surfaces have been measured for electron irradiation with a primary energy from 20 to 400 eV. We separated the contributions of reflected, rediffused and true-secondary electrons out from the spectra and observed significant differences in their incidence angle dependence. These results provide crucial information on the electron cloud formation in particle accelerators and may shed light on the involved physical mechanisms  
TUPP037 Impedance and Instabilities for the ALBA Storage Ring 1622
 
  • T. F. Günzel, F. Pérez
    ALBA, Bellaterra
 
  The geometrical impedance in all 3 planes for most of the vacuum chamber elements of the ALBA storage ring was computed with the 3D-solver GdfidL. Optimisation of some element geometries was carried out in order to reduce dissipative losses and in general the impedance. Resistive wall impedance was calculated analytically. The thresholds of various instabilities were determined on the basis of analytically formulated threshold criteria. The most important are a HOM-driven longitudinal multibunch instability and the transverse resistive wall instability. It is proposed to combat the first one by Landau damping using partial filling and the second one by a transverse feedback system.  
TUPP038 On the Longitudinal Coupling Impedance and Transmission Coefficient from Uniform and Hollow Ring Sources 1625
 
  • A. M. Al-Khateeb, O. Boine-Frankenheim, R. W. Hasse
    GSI, Darmstadt
  • J. M. Shobaki
    Yarmouk, Irbid
 
  The longitudinal coupling impedance and the transmission coefficient resulting from a thin ring and from a uniform disk are obtained analytically for a resistive cylindrical beam-pipe of finite wall thickness. The impedances are derived and then compared with the well known corresponding expression for perturbations on a uniform, coasting beam. The transmission coefficients from both sources are found to be exactly the same. Differences do appear in the expressions for the electromagnetic fields within the beam region, and therefore leading to different coupling impedances. By applying the results to parameters relevant for the SIS-18 synchrotron at GSI, it is found that the formula from the ring source underestimates the space-charge impedance at all beam energies and it shows a noticeable deviation from the disk formula for all frequencies. Although their mathematical expressions are different, resistive-wall impedances from the two sources are found to be numerically equal. The space-charge impedances become equal asymptotically only in the so called ultra-relativistic limit.

A. Al-Khateeb is on leave from Yarmouk University, Irbid, Jordan

 
TUPP039 Wake-field Compensation in Energy Recovery Linacs 1628
 
  • G. Hoffstaetter, M. G. Billing, Y. H. Lau
    CLASSE, Ithaca
 
  Problems created by the correlated energy spread that wake fields can produce are strongly enhanced in Energy Recovery Linacs (ERLs), as compared to conventional linacs. This is due to the fact that in ERLs the spent beam is decelerated by a potentially large factor, which increases the relative energy spread proportionally. We show how severe this problem is for the impedance budget of the x-ray ERL that Cornell plans to build, and we analyze several different possibilities to compensate the correlated energy spread involving de-phasing linac components, linear and nonlinear time-of-flight terms in different accelerator sections, or high frequency accelerating cavities. Because of the particular design, which has a turn-around loop between two sections of the linac, there are many options for these techniques which we compare and evaluate.  
TUPP043 Computational Beam Dynamics Studies of Collective Instabilities Observed in SNS 1640
 
  • J. A. Holmes, S. M. Cousineau, V. V. Danilov, A. P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • L. K. Jain
    UW/Physics, Waterloo, Ontario
 
  During the commissioning and early operation of the Spallation Neutron Source, some physcics shifts were set aside for high intensity stability studies. Under certain, especially contrived conditions, a number of beam instabilities were induced. These included both electron cloud and ring impedance driven phenomena. In this paper we apply both simple analytic models and the ORBIT Code to the description and simulation of these observed instabilities.  
TUPP045 Studies of Beam Breakup in Dielectric Structures 1643
 
  • A. Kanareykin, C.-J. Jing, A. L. Kustov, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai, J. G. Power
    ANL, Argonne, Illinois
 
  Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable at the AWA facility. The numerical part of this research is based on a particle-Green’s function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.  
TUPP047 Simulation Studies on Coupler Wakefield and RF Kicks for the International Linear Collider with MERLIN 1649
 
  • D. Kruecker, I. Melzer-Pellmann, F. Poirier, N. J. Walker
    DESY, Hamburg
 
  One of the critical issues in the design of the superconducting cavities or the International Linear Collider (ILC) is the influence of the RF and higher order mode (HOM) couplers on the beam dynamics. Both types of couplers break the rotational symmetry of the cavity and introduce non vanishing transverse wakefields even on the cavity axis. Furthermore the RF input coupler introduces an asymmetry into the accelerating RF field and thereby additional transverse field components. We have implemented both effects following the calculations presented previously* into the MERLIN C++ library**. This allows us to study the influence of wakefield and RF kicks on the beam dynamics, the bunch shape and the overall performance of the ILC for different proposed coupler designs.

*I. Zagorodnov and M. Dohlus, ILC Workshop, DESY 2007; K. Bane and I. Zagorodnov, Wake Fest 07, SLAC 2007.
**Merlin - A C++ Class Library for Accelerator Simulations; http://www.desy.de/~merlin.

 
TUPP048 Collective Effects in the EMMA Non-scaling FFAG 1652
 
  • S. Machida, D. J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. S. Berg
    BNL, Upton, Long Island, New York
  • S. R. Koscielniak
    TRIUMF, Vancouver
 
  EMMA is an electron machine to study beam dynamics in a linear nonscaling FFAG. We wish to verify that the behavior predicted by the theory and simulation is correct. In particular, we will study, with large emittance beams, a novel accelerating mode outside an rf bucket, and the effects of crossing "resonances." In EMMA, some collective effects become a concern even though the beam stays in the ring for only 10 to 20 turns. We report studies of direct and image space charge, beam loading, and other collective effects with a tracking simulation. Space charge effects, already potentially significant in EMMA, are enhanced by the fact that the beam passes through the beam pipe off-center. There is some possibility of a negative mass instability for some operation modes. We will show several 3D simulation results for space charge and beam loading effects and pure longitudinal simulation for the negative mass instability.  
TUPP049 Experimental Electron Cloud Studies in the CERN Proton Synchrotron 1655
 
  • E. Mahner, F. Caspers, T. Kroyer
    CERN, Geneva
 
  Indications for a beam-induced electron cloud build-up are observed since 2000 for the nominal LHC beam in the PS to SPS transfer line and during the last turns before ejection from the PS. A new electron cloud setup was designed, built, and installed in the PS. It contains shielded button-type pickups, a dipole magnet, a vacuum gauge, and a dedicated stripline electrode to experimentally verify the beneficial effect of electron cloud clearing electrodes. During the 2007 run, the electron cloud effect was also clearly observed in the PS and efficient electron cloud suppression has been obtained for negative and positive bias voltages on the clearing electrode. Here, we present electron cloud measurements with different filling patterns and bunch spacings in the PS.  
TUPP050 Electron Cloud Mitigation by Fast Bunch Compression in the CERN PS 1658
 
  • H. Damerau, S. Hancock, T. Kroyer, E. Mahner, M. Schokker
    CERN, Geneva
 
  A fast transverse instability has been observed with nominal LHC beams in the CERN Proton Synchrotron (PS) in 2006. The instability develops within less than 1 ms, starting when the bunch length decreases below a threshold of 11.5 ns during the RF procedure to shorten the bunches immediately prior to extraction. An alternative longitudinal beam manipulation, double bunch rotation, has been proposed to compress the bunches from 14 ns to the 4 ns required at extraction within 0.9 ms, saving some 4.5 ms with respect to the present compression scheme. The resultant bunch length is found to be equivalent for both schemes. In addition, electron cloud and vacuum measurements confirm that the development of an electron cloud and the onset of an associated fast pressure rise are delayed with the new compression scheme. Beam dynamics simulations and measurements of the double bunch rotation are presented as well as evidence for its beneficial effect from the electron cloud standpoint.  
TUPP051 Coupling Impedance of DAΦNE Upgraded Vacuum Chamber 1661
 
  • F. Marcellini, D. Alesini, P. Raimondi, G. Sensolini, B. Spataro, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma)
 
  The DAΦNE Phi-factory at INFN LNF has been ugraded in the second half of 2007 with a scope to test a recently proposed scheme of crab waist collisions. The vacuum chamber of the collider has been substantially modified: two new low impedance interaction regions have been designed and installed, the new stripline injection kickers have been implemented, the old bellows have been substituted by the new ones and all ion clearing electrodes have been removed. In the paper we present the machine impedance study of these new vacuum chamber components and compare bunch lengthening measurements in the modified DAΦNE with simulation results.  
TUPP053 Radiolocation of a HOM Source in the PEP-II Rings 1664
 
  • A. Novokhatski, J. Seeman, M. K. Sullivan
    SLAC, Menlo Park, California
 
  A signal from the antenna situated in the LER (Low Energy Ring) helped to find a broken shielded bellows in the HER (High Energy Ring) during a single HER bunch operation.  
TUPP054 A Model of an Electrical Discharge in the Flange Contacts with Omega Seals at High Currents in PEP-II 1667
 
  • A. Novokhatski, J. Seeman, M. K. Sullivan
    SLAC, Menlo Park, California
 
  During operation with high currents at HER (High Energy Ring), high temperature elevation was found at almost every location of the vacuum chamber flange contacts. Omega RF seals were strongly damaged or even evaporated by sparks and electrical discharge. We suggest a physical model, which may explain this effect.  
TUPP055 Loss Factor of the PEP-II Rings 1670
 
  • A. Novokhatski, M. K. Sullivan
    SLAC, Menlo Park, California
 
  RF power balance method is used to measure the synchrotron radiation losses and the wake field losses. We present the history of the loss factor during the last several runs, which reveals many interesting correlations with vacuum chamber improvement and processing.  
TUPP058 Impedance Estimation of Diamond Cavities 1673
 
  • S. A. Pande, R. T. Fielder, M. Jensen
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
 
  The RF straight section of the Diamond storage ring presently consist of two CESR type SCRF cavities with a provision to install a third cavity in the future. The cavities are equipped with HOM loads and are joined to the adjacent storage ring beam pipe using tapered transitions. The RF cavities are simulated with MAFIA, CST Studio and ABCI to estimate their contribution to the total ring impedance. We also measured the resonant frequencies and Q factors of residual HOMs in these cavities. In this paper, we present the results of our measurements and simulations which lead us to an estimation of the impedance of the RF straight.  
TUPP059 Study of Controlled Longitudinal Emittance Blow-up for High Intensity LHC Beams in the CERN SPS 1676
 
  • G. Papotti, T. Bohl, T. P.R. Linnecar, E. N. Shaposhnikova, J. Tuckmantel
    CERN, Geneva
 
  Preventive longitudinal emittance blow-up, in addition to a fourth harmonic Landau damping RF system, is required to keep the LHC beam in the SPS stable up to extraction. The beam is blown-up in a controlled way during the acceleration ramp by using band-limited phase noise targeted to act inside the synchrotron frequency spread, which is itself modified both by the second RF system and by intensity effects (beam loading and others). For a high intensity beam these latter effects can lead to a non-uniform emittance blow-up and even loss of stability for certain bunches in the batch. In this paper we present studies of the emittance blow-up achieved with high intensity beams under different conditions of both RF and noise parameters.  
TUPP061 Comparison between Laboratory Measurements, Simulations and Analytical Predictions of the Resistive Wall Transverse Beam Impedance at Low Frequencies 1679
 
  • F. Roncarolo
    UMAN, Manchester
  • F. Caspers, T. Kroyer, E. Métral
    CERN, Geneva
  • B. Salvant
    EPFL, Lausanne
 
  The prediction of the resistive wall transverse beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instability. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to crosscheck the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of i) sample graphite plates, ii) stand-alone LHC collimator jaws and iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.  
TUPP062 Beam Coupling Impedance Studies on LHC FP420 Multi-pocket Beam Pipe Prototype 1682
 
  • F. Roncarolo, R. Appleby, R. M. Jones
    UMAN, Manchester
 
  The LHC FP420 collaboration is assessing the feasibility of installing forward proton detectors 420m from the ATLAS and/or CMS interaction points. The latest prototype of a FP420 station consists of a modified LHC beam pipe in which two pockets hosting the detectors introduce an abrupt cross-section variation of the pipe. During the FP420 proposed operation, each station is moved towards the beam as close as 3 mm (~ 10 σx). The impact on the LHC beam coupling impedance has been evaluated with a laboratory wire measurement and a suite of numerical simulations. In addition, we describe a proposed modification of the beam pipe design which minimizes the impedance of the resonances without compromising the FP420 detector signal to background ratio.  
TUPP063 Characterization of the ATLAS Roman Pots Beam Coupling Impedance and Mechanics 1685
 
  • F. Roncarolo, R. M. Jones
    UMAN, Manchester
  • F. Caspers, B. Di Girolamo, T. Kroyer
    CERN, Geneva
 
  At the LHC, four Roman Pot (RP) type detectors will be installed on both sides of the ATLAS experiment with the aim of measuring elastic scattering at very small angles and determining the absolute luminosity at the interaction point. During dedicated LHC runs, the detectors will be positioned at about 1 mm from the nominal beam orbit. Numerical simulations and laboratory measurements were carried out to characterize the RP impact on the total LHC beam coupling impedance. The measurement results assess the effectiveness of RF-absorbing ferrite plates that have been mounted in convenient locations in order to damp high Q resonances of the RP structure. In addition, we review the RP mechanics emphasizing the accuracy and reproducibility of the positioning system.  
TUPP065 Experimental Study of the Electron Cloud Instability in the CERN-SPS 1688
 
  • G. Rumolo, G. Arduini, E. Benedetto, E. Métral, G. Papotti, E. N. Shaposhnikova
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • B. Salvant
    EPFL, Lausanne
 
  The electron cloud instability limits the performance of many existing proton and positron rings. A simulation study carried out with the HEADTAIL code revealed that the threshold for its onset decreases with increasing beam energy, if the 6D emittance of the bunch is kept constant and the longitudinal matching to the bucket is preserved. Experiments have been carried out at the CERN-SPS to study the dependence of the vertical electron cloud instability on the energy and on the beam size. The reduction of the physical transverse emittance as a function of energy is considered in fact to be the main reason for the unusual dependence of this instability on energy.  
TUPP066 CERN SPS Impedance in 2007 1691
 
  • E. Métral, G. Arduini, T. Bohl, H. Burkhardt, F. Caspers, H. Damerau, T. Kroyer, H. Medina, G. Rumolo, M. Schokker, E. N. Shaposhnikova, J. Tuckmantel
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • B. Salvant
    EPFL, Lausanne
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
  Each year several measurements of the beam coupling impedance are performed in both longitudinal and transverse planes of the CERN Super Proton Synchrotron to keep track of its evolution. In parallel, after the extensive and successful campaign of identification, classification and cure of the possible sources of (mainly longitudinal) impedance between 1998 and 2001, a new campaign (essentially for the transverse impedance this time) has started few years ago, in view of the operation of the SPS with higher intensity for the LHC luminosity upgrade. The present paper summarizes the results obtained from the measurements performed over the last few years and compares them to our predictions. In particular, it reveals that the longitudinal impedance is reasonably well understood and the main contributors have already been identified. However, the situation is quite different in the transverse plane: albeit the relative evolution of the transverse impedance over the last few years can be well explained by the introduction of the nine MKE kickers necessary for beam extraction towards the LHC, significant contributors to the SPS transverse impedance have not been identified yet.  
TUPP067 Transverse Mode-coupling Instability in the CERN SPS: Comparing MOSES Analytical Calculations and HEADTAIL Simulations with Experiments in the SPS 1694
 
  • B. Salvant
    EPFL, Lausanne
  • G. Arduini, E. Métral, G. Papotti, G. Rumolo, R. J. Steinhagen, R. Tomas
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
  Since 2003, single bunches of protons with high intensity (1.2·1011 protons) and low longitudinal emittance (0.2 eVs) have been observed to suffer from heavy losses in less than one synchrotron period after injection at 26 GeV/c in the CERN Super Proton Synchrotron (SPS) when the vertical chromaticity is corrected. Understanding the mechanisms underlying this instability is crucial to assess the feasibility of an anticipated upgrade of the SPS, which requires bunches of 4·1011 protons. Analytical calculations from MOSES and macroparticle tracking simulations using HEADTAIL with an SPS transverse impedance modelled as a broadband resonator had already qualitatively and quantitatively agreed in predicting the intensity threshold of a fast instability. A sensitive frequency analysis of the HEADTAIL simulations output was then done using SUSSIX, and brought to light the fine structure of the mode spectrum of the bunch coherent motion. A coupling between the azimuthal modes -2 and -3 was clearly observed to be the reason for this fast instability. The aim of the present paper is to compare the HEADTAIL simulations with dedicated measurements performed in the SPS in 2007.  
TUPP068 Bench Measurements of the Low Frequency Transverse Impedance of the CERN LHC Beam Vacuum Interconnects with RF Contacts 1697
 
  • B. Salvant
    EPFL, Lausanne
  • F. Caspers, E. Métral
    CERN, Geneva
  • F. Roncarolo
    UMAN, Manchester
 
  The low frequency longitudinal and transverse impedances of the CERN Large Hadron Collider (LHC) have to be specifically minimized to prevent the onset of coherent instabilities. The LHC beam vacuum interconnects were designed as Plug In Modules (PIMs) with RF contacts to reduce their coupling impedances, but the resulting contact resistance is a concern, as this effect is difficult to estimate. High sensitivity measurements of the transverse impedance of a PIM at low frequency using a coil probe are presented. In particular, the increase of the transverse impedance of the PIM when it is elongated to its operating position is discussed in detail. Finally, the issue of non-conforming contact resistance is also addressed.  
TUPP071 Development of TiN Coating System for Beam Ducts of KEK B-factory 1700
 
  • K. Shibata, H. Hisamatsu, K.-I. Kanazawa, M. Shirai, Y. Suetsugu
    KEK, Ibaraki
 
  A titanium nitride (TiN) coating system for the copper beam ducts of KEK B-factory (KEKB) was developed to reduce the secondary electron yield (SEY) from the inner surface, which would mitigate the electron cloud instability. The coating was done by DC magnetron sputtering of titanium in argon and nitrogen atmospheres. The duct was set vertically, and a titanium cathode rod was hung from the top on the center axis of the duct. A magnetic field was supplied by a movable solenoid coil placed outside of the duct. Preliminary experiments using small copper samples showed that a 200-nanometer-thick TiN film coated at 150 degree is the best from the viewpoints of SEY and adhesion strength. The SEY of the coated sample decreased to 60% of that of non-coated copper after an electron dose of 0.01 C/mm2, and the maximum SEY was 0.84. Using this system, five ducts with a length of up to 3.6 m were successfully coated. Some of them were installed into the KEKB positron ring last summer, and no problem was found in the following beam operation with a beam current of up to 1.6 A. One coated duct with an electron monitor was installed this winter, and the effect of the coating will be checked.  
TUPP073 Bench-top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade 1703
 
  • J. C. Smith, K. L.F. Bane, J. E. Doyle, L. Keller, S. A. Lundgren, T. W. Markiewicz, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California
 
  The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite collimators with 30 high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and this design will be discussed here. Simulations have been performed in MAFIA to study both the resistive wall and geometric impedance contributions of our rotatable collimator design. Benchtop stretched coil probe impedance measurements have also been performed on prototype components to directly measure the low frequency impedance contributions. The design also calls for an RF contact interface at the jaw end. This contact resistance must be a small fraction of a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of various metal pairs and surface coatings.  
TUPP074 A New RF Shielded Bellows for the DAΦNE Upgrade 1706
 
  • S. Tomassini, F. Marcellini, P. Raimondi, G. Sensolini
    INFN/LNF, Frascati (Roma)
 
  A new RF shielded bellows, using the technology of omega shaped strip of beryllium copper material, has been developed and tested on the DAΦNE Upgrade*. The RF omega shield is composed by many Be-Cu strips held by an external floating ring**. Thermal power loss on strips can be easily extracted and dissipated allowing high beam current operation. Leakage of beam induced e.m. fields through the RF shield is almost suppressed. Twenty omega bellows were manufactured and installed in the DAΦNE storage rings and showed good properties up to a stored beam current of 700 mA.

*DAΦNE upgrade: A New magnetic and mechanical layout. PAC07. pp. 1466-1468, Albuquerque.
**Design and E. M. Analysis of the New DAΦNE Interaction Region. PAC07, Albuquerque, pp 3988.

 
TUPP076 Longitudinal and Transverse Impedances of XFEL Kicker Vacuum Chamber 1712
 
  • A. V. Tsakanian, J. Rossbach
    Uni HH, Hamburg
  • M. Ivanyan
    CANDLE, Yerevan
 
  In European XFEL project beam delivery system the kicker magnet vacuum chamber design is composed of the ceramic pipe coated with Titanium Stabilized High Gradient Steel. In this paper the results of the study for the longitudinal and transverse impedances for such a laminated vacuum chamber are presented. The field matching technique is used to calculate the vacuum chamber impedances. The loss and kick factors are given.  
TUPP079 Distortion of Crabbed Bunch due to Electron Cloud with Global Crab 1715
 
  • L. Wang, Y. Cai, T. O. Raubenheimer
    SLAC, Menlo Park, California
 
  In order to improve the luminosity, crab cavities have been installed in the KEKB HER and LER. Since there is only one crab cavity in each ring, the crab cavity generates a horizontally titled bunch oscillating around the whole ring. The electron cloud in LER (positron beam) may distort the crabbed bunch and cause the luminosity drop. This paper briefly estimates the distortion of positron bunch due to the electron cloud with global crab.  
TUPP081 Longitudinal Wakefields and Impedance in the CSNS/RCS 1718
 
  • N. Wang, Q. Qin
    IHEP Beijing, Beijing
 
  With the more general expressions developed for the wakefield generated by nonrelativistic beam*, the impedances of some main vacuum parts of the Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) are calculated and compared with the relativistic case. An impedance model is then proposed for the ring. With this impedance model, beam instabilities in the CSNS/RCS are investigated.

*N. Wang and Q. Qin, Phys. Rev. ST Accel. Beams 10, 111003 (2007)

 
TUPP082 Longitudinal Stability of Flat Bunches with Space-charge or Inductive Impedance 1721
 
  • F. Zimmermann
    CERN, Geneva
  • I. Santiago Gonzalez
    University of the Basque Country, Bilbao
 
  We study the loss of Landau damping for the longitudinal plane via the ''Sacherer formalism''. Stability limits are calculated for several longitudinal beam distributions, in particular for two types of flat bunches, which could be of interest to the LHC upgrade. The resulting Landau stability diagrams are computed and displayed for different azimuthal modes. A general recipe is given for calculating the threshold intensity in the case of a capacitive impedance below transition or, equivalently, for a purely inductive impedance above transition. Specific results are finally presented for the case of the PS Booster, as an example of space-charge impedance below transition, and for the SPS, as an example of inductive impedance above transition.