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Abstract

We develop a scheme for obtaining the impedance of
a gradually tapered, axisymmetric geometry containing a
bunch of arbitrary profile travelling at the speed of light
parallel to the axis of the taper. Coordinate-free expres-
sions for Maxwell’s equations are 2+2-split in a coordinate
system adapted to the particle beam and the taper and, us-
ing an asymptotic expansion for a gradual taper, a coupled
hierarchy of Poisson equations is obtained. Applications of
the scheme are presented.

INTRODUCTION

The design of accelerator components such as collima-
tors relies on understanding the consquences of passing an
ultrarelativistic charged beam through a waveguide with a
gradual taper. This is currently studied using a combination
of experiment and computer simulation. However, various
analytical methods have also been developed to estimate
impedances (see, for example, [1]). Most recently, Stu-
pakov [2] developed a process for evaluating the impedance
up to the second order of iteration for low frequency beams
travelling at v = c in perfectly conducting waveguides of
arbitrary cross-section. We shall use a similar method,
restricted to axially symmetric confining geometries [3].
However, our approach, using auxiliary potentials, enables
us to relax Stupakov’s low-frequency condition and pro-
duce a hierarchy of equations that can be solved to arbitrary
order.

MAXWELL EQUATIONS AND
BOUNDARY CONDITIONS

The spacetime metric g is given in cylindrical polar co-
ordinates by1

g = −dt⊗ dt + dz ⊗ dz + dr ⊗ dr + r2dθ ⊗ dθ (1)

and the transverse, cross-sectional domainD at fixed t and
z has the induced metric

g⊥ = dr ⊗ dr + r2dθ ⊗ dθ (2)

In spacetime, the Hodge map and exterior derivative are
denoted � and d, and in the transverse domain, they are
denoted by #⊥ and d⊥. The transverse co-derivative δ⊥ is
defined as

δ⊥ = #−1
⊥ d⊥#⊥η (3)

1We work in the MKS system, with units in which the speed of light
c = 1.

where ηω = (−1)pω for any p-form ω and #⊥1 = rdr ∧
dθ.
The source, moving in the positive z-direction at the speed
of light, has charge density ρ and 4-velocity field

V = ∂t + ∂z (4)

The vacuum Maxwell equations for the spacetime 2-form
F are given by

dF = 0, d � F = − ρ

ε0
� Ṽ (5)

where Ṽ = g(V,−) and ε0 is the permittivity of free space.
In terms of new co-ordinates

u := z − t, ζ := z (6)

the metric and volume 4-form �1 = dt∧dz∧#⊥1 become

g = dζ ⊗ du + du⊗ dζ − du⊗ du + g⊥ (7)

�1 = dζ ∧ du ∧#⊥1 (8)

and the velocity 1-form Ṽ and its Hodge dual are

Ṽ = du, �Ṽ = du ∧#⊥1 (9)

Taking the exterior derivative of the second Maxwell equa-
tion implies that the charge density is independent of ζ and
can thus be written ρ(r, θ, u). One may uniquely express
F in terms of 0-forms Φ(r, θ, ζ, u) and Ψ(r, θ, ζ, u), and
1-forms α⊥(r, θ, ζ, u) and β⊥(r, θ, ζ, u) which are inde-
pendent of dζ and du:

F = Φdζ ∧ du + du ∧ α⊥ + dζ ∧ β⊥ + Ψ#⊥1 (10)

Furthermore, one may write [4]

α⊥ = d⊥A + #⊥d⊥a, β⊥ = d⊥B + #⊥d⊥b (11)

for 0-forms A(r, θ, ζ, u), a(r, θ, ζ, u), B(r, θ, ζ, u) and
b(r, θ, ζ, u) provided A and B vanish on the boundary ∂D.
This condition is compatible with the perfectly conducting
boundary conditions that will be imposed on F below.
Without loss of generality, it proves expedient to re-write
the form of F in terms of six new fields W , X , HB , Hb,
HΦ andHϕ that will facilitate our subsequent analysis;

A = ∂uW + ∂ζW −HB, B = HB − ∂ζW

Φ = ∂uHΦ + ∂uHB + ∂ζHB − 2∂2
uζW − ∂2

ζζW

a = ∂uX, b = ∂ζX −Hϕ

Ψ = ∂ζHϕ + ∂uHϕ +Hb − 2∂2
uζX − ∂2

ζζX (12)
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Thus, the Maxwell equations then reduce to the following
relations:

δ⊥d⊥HB = 0

d⊥Hb = #⊥d⊥
(
∂uHB

)
, d⊥Hϕ = #⊥d⊥HΦ

δ⊥d⊥W − 2∂2
uζW − ∂2

ζζW

+ ∂uHΦ + ∂uHB + ∂ζHB = P (r, θ, u)

δ⊥d⊥X − 2∂2
uζX − ∂2

ζζX + ∂ζHϕ + ∂uHϕ +Hb = 0
(13)

where ∂uP (r, θ, u) = ρ(r,θ,u)
ε0

. The second equation in (13)
implies the harmonic equations

δ⊥d⊥Hb = δ⊥d⊥Hϕ = δ⊥d⊥HΦ = 0 (14)

The waveguide wall is the spacelike hypersurface

f := r −R(ζ) = 0 (15)

for some smooth function R(ζ). We assume a perfectly
conducting boundary condition for F :

df ∧ F = 0 at f = 0 (16)

Equation (16) can be satisfied by setting

W = ∂rX = 0, HB = ∂ζW, HΦ = −R′(ζ)
1
r
∂θX

(17)
on the boundary f = 0.

GRADUALLY TAPERING WAVEGUIDE

Consider first a regular cylindrical waveguide with con-
stant radius R(ζ) = R0. As ∂ζρ = 0, the source and con-
fining geometry are both symmetric with respect to trans-
lations in the ∂ζ direction. The simplest solution to the
Maxwell system (13) with the boundary conditions (17) is
then

X0 = Hb
0 = HB

0 = HΦ
0 = Hϕ

0 = ∂ζW0 = 0 (18)

δ⊥d⊥W0 = P (r, θ, u) (19)

with W0 = 0 on the boundary.
A waveguide is defined to be gradually tapering if

f := r − Ř(εζ) = 0 (20)

where ε is a small, dimensionless parameter. The fields will
then vary slowly with ζ. Introduce a ‘slow’ longitudinal co-
ordinate

s = εζ (21)

and rewrite all the potentials in terms of s, using the nota-
tion

χ(r, θ, ζ, u) = χ̌(r, θ, s, u) (22)

where χ̌ ∈
{
W̌ , X̌, ȞB, Ȟb, ȞΦ, Ȟϕ

}
. Express the po-

tentials in the form of asymptotic series in ε:

χ̌ =
∞∑

n=0

εnχ̌n (23)

Note ∂ζχ = εχ̌′ (where, from now on, a prime denotes
differentiation with respect to s). The Maxwell equations
(13) with boundary conditions (17) decouple to yield a hi-
erarchical set of 2-dimensional Laplace and Poisson equa-
tions for every order n, and the boundary conditions on ȞB

n

and ȞΦ
n depend on (n − 1)-order potentials. This leads to

a straightforward procedure for calculating the potentials
order-by-order. For n = 0, the only non-zero potential is
Ŵ0 which is a solution to δ⊥d⊥W0 = P (r, θ, u) and van-
ishes at r = R(s).
For every subsequent order of n:

1. Calculate the harmonic potential ȞB
n by solving the

2-dimensional Laplace equation

δ⊥d⊥ȞB
n = 0 (24)

subject to the boundary condition2

ȞB
n = W̌ ′

n−1 at r = Ř(s) (25)

2. Calculate Ȟb
n from 3

d⊥Ȟb
n = ∂u#⊥d⊥ȞB

n (26)

3. Calculate the harmonic potential ȞΦ
n by solving the

2-dimensional Laplace equation

δ⊥d⊥ȞΦ
n = 0 (27)

subject to ȞΦ
n = −Ř′(s)1

r ∂θX̌n−1 at r = Ř(s)
4. Calculate Ȟϕ

n from

d⊥Ȟϕ
n = #⊥d⊥ȞΦ

n (28)

5. Calculate the potential Wn by solving the 2-
dimensional Poisson equation

δ⊥d⊥W̌n = W̌ ′′
n−2 + 2∂uW̌ ′

n−1

− ∂uȞΦ
n − ∂uȞB

n − ȞB′
n−1 (29)

where W̌n vanishes at r = Ř(s).
6. Calculate the potential X̌n by solving the 2-

dimensional Poisson equation

δ⊥d⊥X̌n = X̌ ′′
n−2+2∂uX̌ ′

n−1−Ȟb
n−∂uȞϕ

n−Ȟϕ′
n−1

(30)
with ∂rX̌n = 0 at r = Ř(s)

2Throughout this section, we are dealing with the transverse Laplacian
δ⊥d⊥. When considering the boundary conditions, s can thus be treated
as a parameter.

3As ȞB
n is harmonic, the converse of Poincaré’s Lemma guarantees

that a solution exists to (26). Ȟb
n is thus defined up to arbitrary functions

of s and u. These are subsequently constrained to zero by the boundary
condition on X̂n. By an analogous argument, a unique value forHϕ can
be obtained fromHΦ using (28).
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EXAMPLE

The method can be used to replicate and extend the
longitudinal impedance4 calculation in [2] for a harmonic
Fourier component of a transverse delta-function beam off-
set from the central axis. In our notation, the source term
and impedance formula are

ρω(r, θ, u) = λωeiωu 1
r
δ(r − r0)δ(θ) (31)

Z‖(ω, r, θ, u) = −Z0
ε0

λω

∫ ∞

−∞
e−iωuΦdζ (32)

= −Z0
ε0

λω

1
ε

∫ ∞

−∞
e−iωuΦ̌ds (33)

where λω is the linear charge density, Z0 is the impedance
of free space and Φ is given by (12). First, W̌ 0 is obtained
by solving δ⊥d⊥W̌ 0 = − i

ω ρω(r, θ, u) subject to Dirichlet
boundary condition at r = Ř(s). The solution is

W̌ 0 = − i

ω
p(u)

{
ln

(
r2r2

0

Ř(s)
2 + Ř(s)

2 − 2rr0 cos θ

)

− ln
(
r2 + r2

0 − 2rr0 cos θ
)
}

(34)

where p(u) := λωeiωu

4πε0
. Furthermore,

W̌ ′
0 = −2i

ω
p(u)

Ř′(s)
Ř(s)

{
1 + 2

∞∑

m=1

Υm(r, θ, s)

}
(35)

where Υm(r, θ, s) :=
(

r0r
Ř(s)2

)m

cosmθ. Evaluating the

potentials according to the procedure in the previous sec-
tion gives ȞB

1 = W ′
0, ȞΦ

1 = Ȟϕ
1 = 0 and

Ȟb
1 = 4p(u)

Ř′(s)
Ř(s)

∞∑

m=1

(
r0r

Ř(s)2

)m

sinmθ (36)

W̌ 1 =
p(u)

2
Ř′(s)
Ř(s)

(
Ř(s)2 − r2

)
[
1 +

∞∑

m=1

2Υm(r, θ, s)
1 + m

]

(37)

X̌1 = p(u)
Ř′(s)
Ř(s)

∞∑

m=1

1
1 + m

(
r0r

Ř(s)2

)m

×
(

r2 − m + 2
m

Ř(s)2
)

sin mθ (38)

ȞB
2 = p(u)Ř′(s)2

[
1 +

∞∑

m=1

2Υm(r, θ, s)
1 + m

]
(39)

ȞΦ
2 = 2p(u)Ř′(s)2

∞∑

m=1

Υm(r, θ, s)
1 + m

(40)

As can be seen from the equation for Φ in (12), Ȟb
2,

Ȟϕ
2 , W̌ 2 and X̌2 are not required in order to evaluate the

4Transverse impedance can be obtained from the Panofsky-Wenzel re-
lation [5].

impedance to second order. The longitudinal electric field
at this approximation is

Φ̌ = p(u)

{
2ε

Ř′(s)
Ř(s)

[
1 + 2

∞∑

m=1

Υm(r, θ, s)

]

+iωε2

[(
Ř′(s)
Ř(s)

(
r2 − Ř(s)2

)
[
1+

∞∑

m=1

2Υm(r, θ, s)
1 + m

])′

+ Ř′(s)2
(

1 + 4
∞∑

m=1

Υm(r, θ, s)
1 + m

) ]}
(41)

The longitudinal impedance follows from (33). If the
waveguide aproaches constant radii R1 as s → −∞ and
R2 as s → ∞, then R′(s) = 0 at s = ±∞ and the second
line of (41) will not contribute to the integral. Thus, to this
approximation,

Z‖ = Z0
ε0

4πλω

{
2 ln

R1

R2
− iωε

∫ ∞

−∞
Ř′(s)2ds

+
∞∑

m=1

(
Υm

∣∣∣
R(s)=R2

R(s)=R1

− 4iωε

1 + m

∫ ∞

−∞
ΥmŘ′(s)2ds

) }

(42)

After changing variable from s to ζ and truncating the se-
ries at m = 1, the second-order impedance (42) is identical
to the tapered cylinder result in [2]. Evaluating W̌ 2 and
X̌2 and repeating the procedure of the previous section for
n = 3, 4, . . . yields higher order correction terms. The
third order correction turns out to be zero for an asymptot-
ically cylindrical pipe. The fourth order correction is

Z‖4 =
Z0ε0

4πλω
iωε3

∫ ∞

−∞
(Λ1Ř

′(s)4 + Λ2Ř
′′(s)2Ř(s)2)ds

(43)
where

Λ1 =
5
24

+
∞∑

m=1

Υmκ1m

3

(
2m2 + 6m + 1

− ω2(4m− 3)κ2mŘ(s)2
)

Λ2 =
3
24
− ω2

12
Ř(s)2 +

∞∑

m=1

Υmκ1m

(
1− ω2κ2mŘ(s)2

)

κ1m =
2

m(m + 1)(m + 2)
, κ2m =

3m2 + 8m + 6
m(m + 1)2(m + 3)

while the fifth order contribution is zero.
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