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Abstract

The longitudinal coupling impedance and the transmis-
sion coefficient resulting from a thin ring and from a uni-
form disk are obtained analytically for a resistive cylindri-
cal beam-pipe of finite wall thickness. The impedances
are derived and then compared with the well known corre-
sponding expression for perturbations on a uniform, coast-
ing beam. The transmission coefficients from both sources
are found to be exactly the same. Differences do appear
in the expressions for the electromagnetic fields within
the beam region, and therefore leading to different cou-
pling impedances. By applying the results to parameters
relevant for the SIS-18 synchrotron at GSI, it is found
that the formula from the ring source underestimates the
space-charge impedance at all beam energies and it shows
a noticeable deviation from the disk formula for all fre-
quencies. Although their mathematical expressions are
different, resistive-wall impedances from the two sources
are found to be numerically equal. The space-charge
impedances become equal asymptotically only in the so
called ultra-relativistic limit.

INTRODUCTION

Reliable impedance calculations are an important issue
for the design and optimization of ring accelerators for high
currents. Especially in the regime of low and medium beam
energies and for low frequencies there still exist relevant
differences in the impedances obtained from different ap-
proaches (see e.g. [1, 2]). This regime is important for
the upgrade of the existing SIS-18 heavy ion synchrotron
at GSI and for the design of the new synchrotrons as part
of the FAIR project. An important issue is the represen-
tation of the source term in Maxwell’s equations. At low
energies it is important to account for the transverse beam
profile. A homogeneously charged disk is used in many
studies in order to model a longitudinal perturbation on the
beam (e.g. in Refs. [2]). For the calculation of the lon-
gitudinal coupling impedance at ultra-relativistic energies
the source term is usually reduced to a thin ring charge [3].
This source term is often employed in impedance calcula-
tions for arbitrary beam energies (see e.g. [4]).

In some limiting cases, like low or high frequencies, the
differences between source terms can be expressed in the
form of multiplicative g-factors, cf. [5]. A treatment for
arbitrary frequencies, however, was missing. The present
work will shed some light on the coupling impedance and
transmission coefficient from two different source terms,
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namely, a thin ring and uniform disk propagating down a
resistive cylindrical beam-pipe of finite wall thickness.

MODEL EQUATIONS

The general wave equations for the external (free) charge
and current densities ρ and �j, respectively, satisfied by the
magnetic induction �B and electric field �E in a conducting
medium of conductivity S, permittivity ε0 and permeabil-
ity μ0 are obtained from Faradays and Amperes laws and
by the continuity equation. We assume a source term of to-
tal charge Q and transverse charge distribution σ(r, θ) that
is moving in a cylindrical pipe of radius b with constant
longitudinal velocity �υ = βcẑ along the z axis.

For a uniformly charged disk, the surface charge density
distribution in the transverse direction is σd = Q/πa2 [2,
6]. A thin ring of radius a, on the other hand, moving par-
allel to the z-axis is represented by σr = Qδ(a− r)/2πa
[3]. Accordingly, the Fourier time-transformed charge den-
sities for both distributions are

ρd(r, z, ω) =
Q

πa2βc
eikzz (1)

ρr(r, z, ω) =
Qδ(a− r)

2πaβc
eikzz , (2)

where ω = kzv has been used and kz is the wave num-
ber in the direction of beam propagation. Due to the
axial symmetry of the particle beams under considera-
tion, only transverse-magnetic (TM) cylindrical waveguide
modes couple to the propagating beams such that Bz = 0.
All other field components are obtained from Ez(r, z, ω)
via Maxwells equations, where Eθ(r, z, ω) and Br(r, z, ω)
vanish identically because of axial symmetry and periodic-
ity demands Ez(r, z, ω) = Ez(r, ω) eikzz . Fourier trans-
forming in time and in transverse space coordinates, and
making use of the density and current of eqs. (1) and (2),
respectively, we get differential equations for the field com-
ponents in the region 0 ≤ r ≤ a, in the beam-pipe region
a ≤ r ≤ b, in the pipe b ≤ r ≤ h, and outside h ≤ r <∞.

For the TM-modes with azimuthal symmetry, the elec-
tromagnetic field components Bθ(r, z, ω) and Er(r, z, ω)
are needed for matching the solutions at the different in-
terfaces involved in the problem under consideration and
are obtained from Ez(r, z, ω) via the Maxwell equations
as follows,

Er(r, z, ω) = −i
γ2

kz

∂Ez(r, z, ω)
∂r

, (3)

Bθ(r, z, ω) =
(

β

c
+ i

μ0βcS

ω

)
Er(r, z, ω) ,

where γ stands for γ0 in the non–conducting regions,
and for γ from γ−2 = γ−2

0

(
1− 2iγ2

0/k2
zδ2

s

)
, where
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δs =
√

2/μ0Sω is the skin depth at frequency ω and
γ−2
0 = 1− β2.
In the following we will solve the wave equations for

Ez for both types of beams and then find the correspond-
ing expressions for the coupling impedance for a resistive
beam–pipe of arbitrary wall thickness.

THIN RING SOURCE

For a point charge Q moving down a beam-pipe with
an offset a in the θ0 = 0 direction with a constant lon-
gitudinal velocity �υ = βcẑ, and in decomposing the corre-
sponding charge and current densities in terms of multipole
moments, the lowest monopole moment gives,

ρr(�r, t) =
Q

2πa
δ(a− r) δ (z − βct) , (4)

�jr(�r, t) =
Q

2πa
δ(a− r) δ (z − βct) βc ẑ .

This monopole source has an axially symmetric transverse
charge distribution and it represents an infinitesimally thin
ring with radius a. Time Fourier–transformed charge and
current densities in equations (4) and (5) are already given
in equation (2). For a thin ring beam moving inside a metal-
lic cylindrical pipe of radius b and finite wall thickness d
extending from r = b to r = b + d with vacuum outside
r > b + d, the longitudinal electric field component E

(r)
z

within each region of interest is calculated.
The overall regular general solution for the electric field

E
(r)
z in each region is written in terms of ther Bessel func-

tions I0 and K0 of arguments σ0 = kz/γ0 and σ = kz/γ.
The system of equations is solved with the discontinuity at
r = a,

∂Er≥a
z

∂r
− ∂Er≤a

z

∂r
= i

kz

ε0γ2
0βc

Q

2πa
. (5)

and the continuity of Ez at r = a, the continuity of Ez and
Bθ at r = b, and r = h. where η = ωε0γ0/iγ (S − iωε0).

We now calculate the corresponding longitudinal cou-
pling impedance as a volume integral over the transverse
distribution of the beam as follows,

Z‖,r(ω) = − 1
Q2

∫

Vbeam

d3x′ �E(r)(r′, z, ω) ·�j ∗
r (r′, z, ω)

= i
nZ0

γ2
0β

I2
0 (σ0a)

[
K0(σ0a)
I0(σ0a)

+
K1(σ0b)+G K0(σ0b)
I1(σ0b)−G I0(σ0b)

]
,(6)

where G is a constant to be found in [2].
In the ultra-relativistic limit such that σ0a � 1 and

σ0b � 1, we have I0(σ0a) → 1, I0(σ0a) → 1, K0(x) →
−

(
ln x

2 + γe

)
I0(x), where γe = 0.5772 is the Euler con-

stant. Accordingly, the4 space charge impedance takes on
the following form,

Z
(sc)
‖,r (ω, γ →∞) = i

nZ0

2γ2
0β

[
2 ln

b

a

]
(7)

and the resistive wall impedance is
Z

(rw)
‖,r (ω) = Z‖,h(ω)− Z

(sc)
‖,h (ω)

= i
nZ0

γ2
0β

I2
0 (σ0a)

[
K0(σ0b)
I0(σ0b)

+
K1(σ0b)+G K0(σ0b)
I1(σ0b)−G I0(σ0b)

]
. (8)

For a perfectly conducting wall, η → 0 and G → 1, the
resistive-wall impedance of eq. (8) vanishes identically. In
the thick wall limit such that d → ∞ we get G → 1 and,
hence, eq. (8) becomes,

Z
(rw)
‖,r (ω) = (9)

= i
nZ0

γ2
0βσ0b

I2
0 (σ0a)

I2
0 (σ0b)

η

1 + ηI1(σ0b)/I0(σ0b)
.

For a thin ring source in a pipe the transmission coefficient
as the ratio of transmitted to incident fields at r = b is
found to be exactly the same expression already reported
for a disk source [2].

UNIFORM DISK

The uniform disk source has been treated already in our
previous paper [2] and here we review the results of the cal-
culations of the coupling impedance and the transmission
coefficient of a cylindrical pipe of finite wall thickness. The
corresponding longitudinal coupling impedance is [2],

Z‖,d(ω) =

i
nZ0

2βγ2

4γ2
0

k2
za2

[
1−2I1(σ0a)

(
K1(σ0a)− 1

H
I1(σ0a)

)]
, (10)

and the resistive wall part alone amounts to

Z
(rw)
‖,d (ω)= i

nZ0

2βγ2
0

8γ2
0

k2
za2

I2
1 (σ0a)

[
K0(σ0b)
I0(σ0b)

+
1
H

]
, (11)

For σ0a � 1 and σ0b � 1, the space-charge impedance of
a uniform beam takes on the following form,

Z
(sc)
‖,d (ω) =≈ i

nZ0

2βγ2
0

[
2 ln

b

a

]
. (12)

Note that, according to the results in eqs. (7) and (12),
both source terms produce asymptotically the same space-
charge impedance in the ultra-relativistic limit. For a thick
wall the resistive wall part takes on the following form,

Z
(rw)
‖,d (ω) =

i
nZ0

βγ2
0σ0b

4I2
1 (σ0a)

σ2
0a2I2

0 (σ0b)
η

1 + η I1(σ0b)/I0(σ0b)
. (13)

If we compare eq. (13) with (10), we see that the
resistive-wall impedances for a thick wall have similar
structures. Differences appear only in the factor I 2

0 (σ0a)
in eq. (10) which is replaced by the factor 4I 2

1 (σ0a)/σ2
0a

2

in eq. (13). Again, in the limit σ0a � 1 and σ0b� 1, both
resistive-wall expressions become identical. For a uniform
disk the transmission coefficient τd(d) is found to be ex-
actly equal to the thin ring transmission coefficient τr. Ac-
cording to Gauss’ integral law, as expected, integral quan-
tities like resistive-wall impedance and transmission fac-
tor outside the sources of charge depend only on the to-
tal charge and not on the details of the charge distribution
within the beam.
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Figure 1: Space charge impedance as a function of beam veloc-
ity.

NUMERICAL EXAMPLES

To visualize possible differences between impedances
from the different source terms, the theory above will be
applied to the heavy ion synchroton SIS18 at GSI Darm-
stadt with a ring circumference of L=216 m. It has a stain-
less steel wall at radius b =10 cm of thickness d ≈ 0.3
mm with a conductivity of S = 1.1 × 106/Ωm. In Fig. 1,
we plot the space charge impedances vs. beam velocity
β at revolution frequency ω = ω0 and beam radius a = 5
cm. The figure show that the impedances from the thin ring
source are always lower than those from the uniform disk.
At the beam reference velocity β = 0.155 of SIS18, we see
an impedance difference of about 600 Ω which corresponds
to 25 % of the space-charge impedance at this energy.

In Fig. 2, we plot the space charge impedances per har-
monic number Z‖(ω)/n vs. mode frequency f = ω/2π,
where ω = nω0, ω0 = βc/R, and n is the harmonic
number. Here we fixed the beam velocity at β = 0.155
with a beam size a = 5 cm. For all frequencies, the fig-
ure shows an obvious difference between the space charge
impedances resulting from the two source terms. Ap-
proximately up to 50 MHz the difference is about 600
Ω and is nearly constant. It becomes smaller by in-
creasing the frequency until it becomes zero at about 300
MHz. For the higher frequencies above 300 MHz, the
thin ring impedance becomes larger than the space charge
impedance from the uniform disk. Variation of the SIS18
space-charge impedance with beam size at revolution fre-
quency is shown in Fig 3. We see that the space-charge
impedance from the uniform disk is greater than the thin
ring source impedance.

Interestingly, the variation of the impedance difference
with beam size is constant for fixed beam energy. At the
beam reference velocity β = 0.155, the impedance differ-
ence is again about 25 % of the disk impedance at the same
beam energy.

CONCLUSIONS

The longitudinal coupling impedances and transmis-
sion coefficients from a thin ring source term and from
a uniformly charged disk propagating down a resistive
cylindrical beam-pipe of finite wall thickness are investi-
gated and limiting cases of space-charge and resistive-wall
impedances from the two source terms have also been ob-
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Figure 2: Space charge impedance as a function of frequency.

tained and discussed. Transmission coefficients from both
source terms are exactly the same. Differences appear in
the electromagnetic fields within the sources leading to dif-
ferent coupling impedances. For the SIS18 synchrotron of
GSI Darmstadt it is found that the space-charge impedance
from the thin ring source deviates appreciably from the
disk formula for a wide range of beam energies and mode
frequencies. Although their mathematical expressions are
different, resistive-wall impedances from the two source
terms are found to be numerically equal. The space-charge
impedances become equal in the ultra-relativistic limit.
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Figure 3: Space-charge impedance as a function of beam radius.
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