Author: Litvinenko, V.
Paper Title Page
MOP066 Effects of e-beam Parameters on Coherent Electron Cooling 232
 
  • S.D. Webb, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent Electron Cooling (CeC) requires detailed con- trol of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC.
 
 
MOP067 Vlasov and PIC Simulations of a Modulator Section for Coherent Electron Cooling 235
 
  • G.I. Bell, D.L. Bruhwiler, I.V. Pogorelov, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Nuclear Physics, grant numbers DE-SC0000835 and DE-FC02-07ER41499. Resources of NERSC were used under contract No. DE-AC02-05CH11231.
Next generation ion colliders will require effective cooling of high-energy hadron beams. Coherent electron cooling (CEC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques. We present Vlasov-Poisson and delta-f particle-in-cell (PIC) simulations of a CEC modulator section. These simulations correctly capture the subtle time and space evolution of the density and velocity wake imprinted on the electron distribution via anisotropic Debye shielding of a drifting ion. We consider 1D and 2D reduced versions of the problem, and compare the exact solutions of Wang and Blaskiewicz with Vlasov-Poisson and delta-f PIC simulations. We also consider interactions under non-ideal conditions where there is a density gradient in the electron distribution, and present simulations of the ion wake.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
 
 
MOP074 Simulations of a Single-Pass Through a Coherent Electron Cooler for 40 Gev/n Au+79 244
 
  • B.T. Schwartz, D.L. Bruhwiler, I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • S. Reiche
    PSI, Villigen, Switzerland
 
  Funding: US DOE Office of Science, Office of Nuclear Physics, grant No.’s DE-FG02-08ER85182 and DE-FC02-07ER41499. NERSC resources were supported by the DOE Office of Science, contract No. DE-AC02-05CH11231.
Increasing the luminosity of ion beams in particle accelerators is critical for the advancement of nuclear and particle physics. Coherent electron cooling promises to cool high-energy hadron beams significantly faster than electron cooling or stochastic cooling. Here we show simulations of a single pass through a coherent electron cooler, which consists of a modulator, a free-electron laser, and a kicker. In the modulator the electron beam copropagates with the ion beam, which perturbs the electron beam density according to the ion positions. The FEL, which both amplifies and imparts wavelength-scale modulation on the electron beam. The strength of modulated electric fields determines how much they accelerate or decelerate the ions when electron beam recombines with the dispersion-shifted hadrons in the kicker region. From these field strengths we estimate the cooling time for a gold ion with a specific longitudinal velocity.
* Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801 (2009)
 
 
TUOAN3 Lattice Design for the Future ERL-Based Electron Hadron Colliders eRHIC and LHeC 696
 
  • D. Trbojevic, J. Beebe-Wang, Y. Hao, D. Kayran, V. Litvinenko, V. Ptitsyn, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under a Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.
We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron-hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC’s 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC, a stand-along 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. . The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linacs straight sections with splitters and combiners.
 
slides icon Slides TUOAN3 [3.002 MB]  
 
TUOAN4 Feedback Scheme for Kink Instability in ERL Based Electron Ion Collider 699
 
  • Y. Hao, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Kink instability presents one of the limiting factors from achieving higher luminosity in ERL based electron ion collider (EIC). However, we can take advantage of the flexibility of the linac and design a feedback system to cure the instability. This scheme raises the threshold of kink instability dramatically and provides for higher luminosity. We studied the effectiveness of this system and its dependence on the amplitude and phase of the feedback. In this paper we present results of theses studies of this scheme and describe its theoretical and practical limitations.
 
slides icon Slides TUOAN4 [1.193 MB]  
 
TUODS5 Optics-free X-ray FEL Oscillator 802
 
  • V. Litvinenko, Y. Hao, D. Kayran, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the Xray range, the spectra of SASE FELs remains rather wide (~0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01% - 0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.
 
slides icon Slides TUODS5 [1.401 MB]  
 
TUP147 Rotating Dipole and Quadrupole Field for a Multiple Cathode System 1106
 
  • X. Chang, I. Ben-Zvi, J. Kewisch, V. Litvinenko, W. Meng, A.I. Pikin, V. Ptitsyn, T. Rao, B. Sheehy, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented.  
 
TUP148 Ion Trapping Study in eRHIC 1109
 
  • Y. Hao, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The ion trapping effect is an important effect in energy recovery linac (ERL). The ionized residue gas molecules can accumulate at the vicinity of the electron beam pass and deteriorate the quality of the electron beam. In this paper, we present simulation results to address this issue in eRHIC and find best beam pattern to eliminate this effect.
 
 
WEP263 A Multiple Cathode Gun Design for the eRHIC Polarized Electron Source 1969
 
  • X. Chang, I. Ben-Zvi, J. Kewisch, V. Litvinenko, A.I. Pikin, V. Ptitsyn, T. Rao, B. Sheehy, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The future electron-ion collider eRHIC requires a high average current (~50 mA), short bunch (~3 mm), low emittance (~20 μm) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode [1]. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique.
 
 
THOBN3 Proof-of-Principle Experiment for FEL-based Coherent Electron Cooling 2064
 
  • V. Litvinenko, I. Ben-Zvi, J. Bengtsson, A.V. Fedotov, Y. Hao, D. Kayran, G.J. Mahler, W. Meng, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, S.D. Webb, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
 
  Funding: This work is supported the U.S. Department of Energy
Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders*. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using one of JLab’s SRF cryo-modules. In this paper, we describe the experimental setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC.
* Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801
 
slides icon Slides THOBN3 [1.379 MB]  
 
THP007 FEL Potential of eRHIC 2151
 
  • V. Litvinenko, I. Ben-Zvi, Y. Hao, C.C. Kao, D. Kayran, J.B. Murphy, V. Ptitsyn, T. Roser, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Brookhaven National Laboratory plans to build a 5-to-30 GeV energy-recovery linac (ERL) for its future electron-ion collider, eRHIC. In past few months, the Laboratory turned its attention to the potential of this unique machine for free electron lasers (FELS), which we initially assessed earlier*. In this paper, we present our current vision of a possible FEL farm, and of narrow-band FEL-oscillators driven by this accelerator.
* V.N. Litvinenko, I. Ben-Zvi, Proceedings of FEL'2004, http://jacow.org/f04/papers/WEBOS04/
 
 
THP016 Design of an Achromatic and Uncoupled Medical Gantry for Radiation Therapy 2163
 
  • N. Tsoupas, D. Kayran, V. Litvinenko, W.W. MacKay
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We are presenting the layout and the optics of a beam line to be used as a medical gantry in radiation therapy. The optical properties of the gantry’s beam line are such as to make the beam line achromatic and uncoupled. These two properties make the beam spot size, which is delivered and focused by the gantry, on the tumor of the patient, independent of the angular orientation of the gantry. In this paper we present the layout of the magnetic elements of the gantry, and also present the theoretical basis for the optics design of such a gantry.
* N. Tsoupas et. al. “Uncoupled achromatic tilted S-bend” Presented at the 11th Biennial European Particle Accelerator Conference, Genoa, Italy, June 23-27,2008
 
 
THP149 Amplification of Current Density Modulation in a FEL with an Infinite Electron beam 2399
 
  • G. Wang, V. Litvinenko, S.D. Webb
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with a kappa-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain.
 
 
TUOAN2 High Luminosity Electron-Hadron Collider eRHIC 693
 
  • V. Ptitsyn, E.C. Aschenauer, M. Bai, J. Beebe-Wang, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, P. He, W.A. Jackson, A.K. Jain, E.C. Johnson, D. Kayran, J. Kewisch, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, M.G. Minty, B. Parker, A.I. Pikin, T. Rao, T. Roser, B. Sheehy, J. Skaritka, S. Tepikian, R. Than, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, Q. Wu, W. Xu, A. Zelenski
    BNL, Upton, Long Island, New York, USA
  • E. Pozdeyev
    FRIB, East Lansing, Michigan, USA
  • E. Tsentalovich
    MIT, Middleton, Massachusetts, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We present the design of future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 1034 cm-2 s-1 can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling and the compact magnets for recirculating passes. A natural staging scenario of step-by-step increases of the electron beam energy by builiding-up of eRHIC's SRF linacs and a potential of adding polarized positrons are also presented.
 
slides icon Slides TUOAN2 [4.244 MB]  
 
TUP056 BNL 703 MHz Superconducting RF Cavity Testing 913
 
  • B. Sheehy, Z. Altinbas, I. Ben-Zvi, D.M. Gassner, H. Hahn, L.R. Hammons, J.P. Jamilkowski, D. Kayran, J. Kewisch, N. Laloudakis, D.L. Lederle, V. Litvinenko, G.T. McIntyre, D. Pate, D. Phillips, C. Schultheiss, T. Seda, R. Than, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • A. Burrill
    JLAB, Newport News, Virginia, USA
  • T. Schultheiss
    AES, Medford, NY, USA
 
  Funding: This work received support from Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Brookhaven National Laboratory (BNL) 5-cell, 703 MHz superconducting RF accelerating cavity has been installed in the high-current energy recovery linac (ERL) experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q0 of 1010. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.
 
 
THP006 Status of High Current R&D Energy Recovery Linac at Brookhaven National Laboratory 2148
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, I. Ben-Zvi, R. Calaga, D.M. Gassner, H. Hahn, L.R. Hammons, A.K. Jain, J.P. Jamilkowski, N. Laloudakis, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, B. Oerter, D. Pate, D. Phillips, J. Reich, T. Roser, C. Schultheiss, B. Sheehy, T. Srinivasan-Rao, R. Than, J.E. Tuozzolo, D. Weiss, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  An ampere-class 20 MeV superconducting energy recovery linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing of concepts relevant for high-energy coherent electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch (~5 nC) and low normalized emittance (~5 mm-mrad) at an energy of 20 MeV. A flexible lattice for the ERL loop provides a test bed for investigating issues of transverse and longitudinal instabilities and diagnostics for CW beam. A superconducting 703 MHz RF photo-injector is considered as an electron source for such a facility. We will start with a straight pass (gun/cavity/beam stop) test for gun performance studies. Later, we will install and test a novel injection line concept for emittance preservation in a lower-energy merger. Here we present the status and our plans for construction and commissioning of this facility.  
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.
 
 
WEP107 CSR Shielding Experiment 1677
 
  • V. Yakimenko, A.V. Fedotov, M.G. Fedurin, D. Kayran
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  It is well known that the emission of coherent synchrotron radiation (CSR) in a dipole magnets leads to increase in beam energy spread and emittance. At the Brookhaven National Laboratory Accelerator Test Facility (ATF) we study the suppression of CSR emission affect on electron beam in a dipole magnet by two vertically spaced conducting plates. The gap between the plates is controlled by four actuators and could be varied from 0 to 14 mm. Our experimental results show that closing the plates significantly reduces both the beam energy loss and CSR-induced beam energy spread. In this paper we present selected results of the experiment and compare then with rigorous analytical theory.