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Abstract

Next generation ion colliders will require effective cool-
ing of high-energy hadron beams. Coherent electron cool-
ing (CEC) can in principle cool relativistic hadron beams
on orders-of-magnitude shorter time scales than other tech-
niques [1]. We present Vlasov-Poisson and delta-f particle-
in-cell (PIC) simulations of a CEC modulator section.
These simulations correctly capture the subtle time and
space evolution of the density and velocity wake imprinted
on the electron distribution via anisotropic Debye shielding
of a drifting ion. We consider 1D and 2D reduced versions
of the problem, and compare the exact solutions of Wang
and Blaskiewicz [2] with Vlasov-Poisson and delta-f PIC
simulations. We also consider interactions under non-ideal
conditions where there is a density gradient in the electron
distribution, and present simulations of the ion wake.

COHERENT ELECTRON COOLING

Coherent electron cooling (CEC) is an exciting new
technique for rapidly cooling high-energy hadron beams
[1]. CEC begins in the same way as conventional elec-
tron cooling, with hadrons (in this case ions) and electrons
co-propagating at matched mean velocities. The proposed
Brookhaven CEC consists of three sections: a modulator,
where the ion imprints a density wake on the electron dis-
tribution, an FEL, where the density wake is amplified by
an FEL, and a kicker, where the amplified wake interacts
with the ion, resulting in dynamical friction for the ion.

In this paper we consider only the modulator section.
We calculate the wakes in the electron distribution due to
the presence of the ions. In the modulator section the ions
drift in a nearly uniform distribution of electrons. Although
these beams are highly relativistic in the laboratory frame,
all velocities are non-relativistic in the “beam frame” drift-
ing with the mean speed of the particles.

The response of the electrons is classical Debye shield-
ing, with a few complications. Accelerated electrons have a
non-isotropic velocity distribution, and the electron density
may also be non-uniform.

In this paper x is the direction of beam propagation. We
consider reductions of the 3D beam to 2D and 1D. In a 2D
or 1D reduction, the problem has no variation in one or both
transverse directions, respectively. A particle in 2D or 1D
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can be thought of as a line charge or plane of charge. Most
equations are valid in dimensions 1 to 3, except as noted.

Simulation results in this paper are calculated using
VORPAL [3]. The two models which can be used are delta-
f PIC [4], and Vlasov-Poisson. The Vlasov-Poisson solver
implemented in VORPAL was adapted from that in Boine-
Frankenheim [5].

Wang and Blaskiewicz [2] found exact solutions to the
Vlasov-Poisson equations in 3D by assuming a special
form of the electron velocity distribution, a kappa-2 distri-
bution. It is nontrivial to derive analogous exact solutions
for the 1D and 2D cases, so we present these solutions at
the end of this paper. Although the velocity distributions
may not be entirely realistic, the exact solutions provide
good tests for our numerical algorithms.

VLASOV-POISSON FORMULATION

The electron response to the presence of the ion is clas-
sical Debye shielding governed by the Vlasov equation

∂f

∂t
+ �v · ∇xf − e

me

[
�E · ∇vf

]
= 0, (1)

where f(�x,�v, t) is the electron density function, and �E is
the electric field induced by this charge distribution.

We consider that the electron density f can be split into a
steady-state solution f0 plus a perturbation f1. In the center
of the beam we can take f0 with a uniform spatial distribu-
tion and a Gaussian velocity distribution. In this paper we
also consider an ion near the edge of the beam, where there
is a density gradient in f0. In this case an external elec-
tric field �E0 is needed to maintain the equilibrium density
profile.

With the decomposition f = f0 + f1 and �E = �E0 + �E1

we have that f0 satisfies the steady-state Vlasov equation

�v · ∇xf0 − e

me

[
�E0 · ∇vf0

]
= 0. (2)

If f0 is uniform in space, then equation (2) is trivially sat-
isfied with �E0 = 0. For a beam with a Gaussian profile in
x and v (in 1D),

f0(x, v) =
n0

σ
√
2π

exp

(
− v2

2σ2
− (x− x0)

2

2r20

)
, (3)

where x0 and r0 are the center and RMS of the falloff in
x, and σ is the RMS velocity of the electron distribution.
Equation (2) requires a linear focusing field

�E0(x) =
me

e

σ2

r20
(x− x0). (4)
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The perturbation density f1 satisfies

∂f1
∂t

+ �v · ∇xf1 − e

me

[
�E1 · ∇v(f0 + f1)+

�E0 · ∇vf1

]
= 0. (5)

The electric field �E1 is induced by the density distribution
f1 and the perturbing ion,

∇ · �E1 =
ρ(�x, t)

ε0
, (6)

where
ρ(�x, t) = Zieδ(�x)− eñ1(�x, t), (7)

and ñ1(�x, t) =
∫
f1(�x,�v, t)d�v. In order to match the nota-

tion of Wang and Blaskiewicz [2], we have used ñ1(�x, t)
to denote the shielding response of the electrons to the
ion. Here Zi is the charge number of the perturbing ion
(Zi = 79 for a fully stripped gold ion)

Equations (5) and (6) form a coupled system of Vlasov-
Poisson equations to be solved. Note that we have made no
assumption here that f1 is small, only that it is the deviation
from a steady-state solution.

Simulation Results

We first compare Vlasov and delta-f PIC simulations
with the exact solution in equation (13) (details presented
in the final section). Figure 1 shows a 1D Vlasov simula-
tion at 0.25 (black), 0.50 (blue), 0.75 (green), and 1.0 (red)
plasma periods and have been vertically offset so that they
do not overlap (this convention is followed in all the fig-
ures). The fit with the exact solutions is excellent and the
two curves are nearly indistinguishable.

Figure 1: Mountain range plot of the electron response
ñ1(x, t) from a Vlasov simulation (color) and equation (13)
(dashed lines). The curves are snapshots at 0.25 (black),
0.50 (blue), 0.75 (green), and 1.0 (red) plasma periods.

The parameter β in the velocity distribution (8) is analo-
gous to the RMS velocity in the Gaussian case, and should
not be confused with a relativistic factor. Parameter values
used are β = 1.13 × 105 m/s, n0 = 1.6 × 1016e/m3,

and the ion speed v0 = −β. The plasma frequency
ωp = 7.14 × 109 rad/sec and the Debye radius λD =
β/ωp = 15.8 microns. The vertical scale of Figure 1 plot
is in units of ñ1(x, t)/λD , the area under the curve is the
total shielding charge.

Figure 2 shows a similar comparison where delta-f PIC
is used. The discrete particle nature of the simulation in-
troduces noise, but the agreement with the exact solution is
good.

Figure 2: Mountain range plot of ñ1(x, t) from a delta-f
PIC simulation (color) and equation (13) (dashed lines).

We now consider the case where a density gradient is
present. In the run of Figure 3, the density varies according
to equation (3) with n0 = 1.6 × 1016e/m3, x0 = 7.5λD
and r0 = 10λD. Consequently, the plasma frequency and
the Debye radius vary with x. The values of ωp and λD are
fixed by the peak density n0. The ion in this case is station-
ary (v0 = 0), and the dashed line shows a comparison with
the exact result (13) with no density gradient.

Figure 3: Mountain range plot of ñ1(x, t) from a Vlasov
simulation in the presence of a density gradient.

In Figure 3 the density is lower to the immediate left of
the ion, and higher to the right. The plasma frequency is
thus lower to the left of the ion compared to the right, and
the electron response can be interpreted as slower to the
left of the ion compared to the right. While the shielding
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within a few Debye radii of the ion is similar to the case
without the density gradient, farther out there are signifi-
cant differences. Of concern is that any significant value of
the density perturbation that occurs away from the ion will
be amplified in the FEL and will contribute to incoherent
effects in the kicker.

Exact Vlasov Solutions in 1D and 2D

We use the notation of Wang and Blaskiewicz [2], and
derive their results in 1D and 2D. In this section the steady-
state density f0 is uniform in �x, so �E0 = 0. To obtain
exact results, we assume a specific form of the steady-state
velocity distribution. In 1D and 2D, this form is

f0(v) =
n0

βπ

(
1 +

(v + v0)
2

β2

)−1

1D, (8)

f0(�v) =
n0

βxβy2π

(
1 +

(vx + v0x)
2

β2
x

+

(vy + v0y)
2

β2
y

)−3/2

2D, (9)

where v0 (1D) or �v0 = (v0x, v0y) (2D) is the ion velocity.
If we take the 3D kappa-2 distribution (equation (10) in
[2]) and integrate it over all z, we obtain equation (9), and
integrating this 2D distribution over all y results in equation
(8).

In equation (17) of Wang and Blaskiewicz [2], they de-
rive a compact formula for the evolution of the density per-
turbation in wavenumber space �k,

dñ1

dt
(�k, t) = Ziωp sin(ωpt) exp

(
λ(�k)t

)
, (10)

where λ(�k) is given by their equation (13), in 1D and 2D
λ(�k) is given by

λ(k) = ikv0 − |k|β 1D, (11)

λ(�k) = i�k · �v0 −
√
(kxβx)2 + (kyβy)2 2D. (12)

We now invert equation (10) using the inverse Fourier
transform. In 1D the formulas are straightforward and
Fourier inversion gives

ñ1(x, t) =
Ziωp
πβ

∫ t

0

ψ sin(ωpψ)dψ

ψ2 + (x+v0ψ)2

β2

. (13)

The limiting case where t→ ∞ can be evaluated exactly
if we assume v0 = 0 (stationary ion). This gives the steady-
state result

ñ1(x) =
Ziωp
2β

exp

(
−ωp|x|

β

)
. (14)

Unlike in 3D, the steady-state density perturbation does not
diverge near the ion, and in fact ñ1(0) = Ziωp/2β. By
integrating the steady-state perturbation ñ1(x) over all x
we find that the total shielding charge is Zi, as expected.

In 2D we note that the real part of λ(�k) in equation
(12) is a function only of the magnitude of the scaled vec-
tor wavenumber (βxkx, βyky). The Fourier inversion can
therefore be reduced to a single integral over this magni-
tude, which can be evaluated exactly (see [6] for the general
theory on this). In 2D, Fourier inversion and time integra-
tion of equation (10) yields

ñ1(�x, t) =
Ziωp

2πβxβy

∫ t

0

ψ sin(ωpψ)dψ[
ψ2 + (x+v0xψ)2

β2
x

+
(y+v0yψ)2

β2
y

]3/2

(15)
We can obtain an exact steady-state result for a stationary

ion �v0 = 0,

ñ1(x, y) =
Ziω

2
p

2πβxβy

∫ ∞

0

α sinα

(α2 + r2)3/2
dα, (16)

where r2/ω2
p = x2/β2

x + y2/β2
y and α = ωpψ. Evaluating

the integral gives

ñ1(x, y) =
Ziω

2
p

2πβxβy
K0(r), (17)

where K0 is a Modified Bessel function of the second
kind. We note that K0(r) ≈ − ln r for small r, and
K0(r) ≈ √

π/(2r) exp(−r) for large r. Therefore the
perturbed density in 2D diverges logarithmically near the
ion. Finally, integrating this over all x and y gives the total
shielding charge Zi.

Future Work

We will develop Vlasov-Poisson simulations in 2D, in-
cluding a possible density gradient as well as external
fields. We are also developing delta-f PIC models for these
cases, in 1D, 2D and 3D.
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