3G - Beam Diagnostics

Paper Title Page
TUP071 The ISAC-II SC-Linac Over Current Monitoring System 557
  • A.K. Mitra, J.T. Drozdoff, K. Langton, R.E. Laxdal, M. Marchetto, W.R. Rawnsley, J.E. Richards
    TRIUMF, Vancouver

A personnel protection system is used to monitor the ion beam current into the experimental hall from the ISAC-II SC-linac. Two resonant capacitive pickups in the transfer line operate at the third harmonic of the bunch rate, 35.36 MHz, Ion charge, velocity and bunch width affect the sensitivity so calibration with dc Faraday cups is needed. Each monitor has a single conversion receiver with an active mixer. LO signals are provided by a frequency synthesizer locked to the accelerator synthesizer. The 1250 Hz IF signals are amplified, filtered with a 100 Hz bandwidth and amplitude detected. No image rejection is used as the background is due to on-frequency leakage from the RFQ and bunchers. An antenna in each monitor loosely couples a pulsed rf test signal to each pickup. These induced signals are mixed down to 11875 Hz, filtered, detected and used to provide watchdog signals. The measured currents are displayed through our EPICS control system which allows setting of the gain ranges, trip levels and conversion factors. The signals are also processed independently by dedicated ADC's and FPGA's to cause the Safety system to trip the beam if the current exceeds a nominal 10 nA.

TUP072 AIRIX Diagnostic Devices for Focal Spot Size and Dose Measurements 560
  • O. Pierret
    CEA, Pontfaverger-Moronvilliers

Funding: CEA-DAM, Polygone d'Experimentation de Moronvilliers 51 490 Pontfaverger Moronvilliers (France).
AIRIX is a 2 kA, 19 MeV, 60 ns, single shot linear accelerator that produces X-rays from the interaction between relativistic electrons and a Tantalum solid target (Ta). Focal spot size, integrated and temporal dose are the main characteristics that we need for the successful development of flash radiography at hydro test facilities. MTFX is a 12 bit Charge-Coupled Device (CCD) intensified camera which is equipped with a scintillator. It can give focal spot size measurements in two directions using a two dimensional wedge. By another way Mucaddix is a CVD Diamond detector which is integrated nearby the AIRIX X-ray beam source. It gives integrated dose, time resolve dose, temporal characteristics of the X-ray flash and timing of the flash respect to the start of object implosion. These two measurement systems are described and the quantified results are reviewed here.

TUP073 Tailoring the Emittance of a Charged Particle Beam with a Tunnel Emittance Meter 561
  • R. Becker
    IAP, Frankfurt am Main

Based on the 'tunnel' emittance used for electron focusing, a similar procedure with two pairs of slits with variable widths is proposed to evaluate fractional emittances and brilliances for ion beams. The measurement starts with closing both slits (one after the other), until a certain fraction of the beam current is cut out. The emittance and brilliance then is well defined for the passing beam part. Formulae are given for the emittance as well as for the brilliance in dependence of the slit width and current. This emittance measurement is free from the background subtraction problem found in the classical density measurement of phase space(s). The functions for the decrease of the emittance and for the increase of the brilliance in dependence of the transmitted beam current provide a figure of merit for the quality of the investigated beam. The device at the same time is also an adjustable emittance filter for the passing beam. At the expense of current the emittance and/or brilliance of a beam can be tailored to any value, which is available by the beam quality.

TUP074 Commissioning of the HITRAP Decelerator Using a Single-Shot Pepper Pot Emittance Meter 564
  • J. Pfister, R. Nörenberg, U. Ratzinger
    IAP, Frankfurt am Main
  • W. Barth, L.A. Dahl, P. Forck, F. Herfurth, O.K. Kester, T. Stöhlker
    GSI, Darmstadt

Funding: Work supported by BMBF under contract 06FY160I.
The Heavy highly charged Ion TRAP (HITRAP) project at GSI is in the commissioning phase. Highly charged ions up to U92+ provided by the GSI accelerator facility will be decelerated and subsequently injected into a large Penning trap for cooling to the MeV/u energy level. A combination of an IH- and an RFQ-structure decelerates the ions from 4 MeV/u down to 6 keV/u. In front of the decelerator a double drift-buncher-system is provided for phase focusing and a final de-buncher integrated in the RFQ-tank reduces the energy spread in order to improve the efficiency for beam capture in the cooler trap*. This contribution concentrates on the beam dynamics simulations and corresponding measurements in the commissioning beam times up to the position of the entrance to the RFQ. Single-shot emittance measurements at higher energies using the GSI pepper pot device and construction of a new device using Micro-Channel Plate technology for low energies as well as profile measurements are presented.

*HITRAP webpage of AP division at GSI,

TUP075 DITANET: A European Initiative in the Development of Beam Instrumentation for Future Particle Accelerators 567
  • C.P. Welsch
    KIP, Heidelberg
  • C.P. Welsch
    MPI-K, Heidelberg

Without an adequate set of beam instrumentation, it would not be possible to operate any particle accelerator, let aside optimize its performance. In a joint effort between several major research centres, Universities, and partners from industry, DITANET aims for the development of beyond-state-of-the-art diagnostic techniques for future accelerator facilities and for training the next-generation of young scientists in this truly multi-disciplinary field. The wide research program covers the development of beam profile, current, and position measurements, as well as of particle detection techniques and related electronics. This contribution introduces this new Marie Curie Initial Training Network, presents the DITANET partner institutes, and gives an overview of the networks broad research and training program.

TUP076 Design of a Beam Halo Monitor with a High Dynamic Range 570
  • J. Egberts, S.T. Artikova, C.P. Welsch
    MPI-K, Heidelberg
  • E. Bravin, T. Lefèvre
    CERN, Geneva
  • T. Chapman, M.J. Pilon
    Thermo, Liverpool, New York

A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Limiting the number of particles in the halo region of a beam would allow for minimizing beam losses and maximizing beam transmission, i.e. the experimental output. Measurements based on either optical transition radiation (OTR) or synchrotron radiation (SR) provide an interesting opportunity for high dynamic range measurements of the transverse beam profile, since the signal is linear with the beam charge over a wide range and is routinely used in many diagnostic applications. In this contribution, first results on beam halo measurements obtained from a flexible core masking technique and an innovative CID camera system are summarized.

TUP077 Development of Screen Monitor with a Spatial Resolution of Ten Micro-meters for XFEL/SPring-8 573
  • K. Yanagida, H. Tomizawa, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  • S.I. Inoue, Y. Otake
    RIKEN/SPring-8, Hyogo

At SPring-8, the 8 GeV linac for an X-ray free electron laser (XFEL) is now under construction. In order to realize the XFEL, highly qualified electron beams are required. A measurement of spatial structure of such beam is very important for the beam tuning of XFEL. The spatial structure is measured with a screen monitor, which we now develop. The resolution of the measurement is required within 10 um. The screen monitor comprises a vacuum chamber with a thin metal (100 um, SUS) foil to emit OTR, lenses for focusing and a CCD camera system. The main feature of the monitor is a bright and high-resolution optical system. In order to realize this system, the lenses are placed close to the foil, the distance between the lenses and the foil is 100 mm, and the lenses have a large diameter (2 in.). This optical-geometrical structure also contributes much to reduce the airy radius of a near field image. Although the range of an observation wavelength is wide as which is form 400 to 800 nm, the resolution of the measurement on the foil is calculated as 2.5 um. The experimental data of the developed screen monitor also suggested the same resolution.

TUP078 Development of Integrator Circuit for Charge Monitoring 576
  • K. Yanagida, H. Hanaki, S. Suzuki
    JASRI/SPring-8, Hyogo-ken

At the SPring-8 1 GeV linac, a beam current or charge is measured by means of an integrator circuit. A signal from a current transformer is processed into an integrated voltage. The Fast Gated Integrator and Boxcar Averager Module (Stanford Research Systems) is presently used as the integrator. However we plan to expand a dynamic range and an integration time of the integrator. Because the noise level of the present integrator becomes too large for the expansion, we developed a low-noise and high-resolution integrator. Both the present and developed integrators have the same functions such as signal gating, accumulation of analog signal and sample hold. The principal noise of the integrator was found to be a switching noise of the gate switch. To reduce the switching noise a GaAs transfer switch SW-283-PIN (M/A-COM) was adopted as the gate switch. The experimental data of the developed integrator showed 1/10 of the noise level of the present integrator.

TUP079 Operational Performance of a New Beam-Charge Interlock System for Radiation Safety at the KEKB Injector Linac 579
  • T. Suwada, K. Furukawa, E. Kadokura, M. Satoh
    KEK, Ibaraki

A new beam-charge interlock system has been developed for radiation safety and machine protection at the KEKB injector linac. Although the previous software-based interlock system was working, it was replaced by the new hardware-based one. The new interlock system restricts the integrated amount of beam charges delivered to four different storage rings (KEKB e+, KEKB e-, PF, PF-AR) at six locations along the linac. When the integrated amount of beam charges exceeds a certain threshold level prescribed at each location, the beam-abort requests are directly sent through a twisted hardwire cable to the safety control system of the linac. The new interlock system boosted its reliability in comparison with the previous system. The full-scale operation of the new interlock system has been started since the end of March 2008. In this report we describe the operational performance of the new beam-charge interlock system.

TUP080 Numerical Study of a New Bunch Length Monitor Utilizing a Detection of Electromagnetic Fields in Millimeter-Wave Region 582
  • T. Suwada, M. Satoh
    KEK, Ibaraki

A new nondestructive bunch-length monitor has been numerically investigated. The monitor detects electromagnetic fields generated through a ceramic gap of a vacuum pipe when a charged particle beam passes through the pipe gap. The frequency spectrum of the electromagnetic fields detected in wave zone spreads over a millimeter-wave length from a microwave length region for a short pulse beam with a bunch length of pico-second region. The frequency spectrum strongly depends on the bunch length of the relativistic charged beam if the geometrical structure of the pipe gap is fixed. The detection principle of the bunch-length monitor and some numerical analysis results applied to a single-bunch electron beam of the KEKB injector linac are described in this report.

TUP081 Transient Beam Loading Compensation in CTF3 585
  • A.E. Dabrowski, S. Bettoni, H.-H. Braun, E. Bravin, R. Corsini, S. Döbert, C. Dutriat, T. Lefèvre, M. Olvegård, P.K. Skowronski, F. Tecker
    CERN, Geneva

In the CLIC Test Facility 3 (CTF3), the strong coupling between the beam and the accelerating cavities (full beam loading) induces transient effects such that the head of the pulse is accelerated almost twice as much as the steady-state part of the pulse. The beam optics in the machine is tailored for the steady-state and not for the higher energy electrons, which are gradually lost. This can lead to inefficiency and contributes to the activation of the machine. A beam loading compensation scheme has been proposed to minimize this effect. By delaying appropriately the arrival time of rf pulse in accelerating cavities with respect to the beam, the transient energy can be brought close (to within a few percent) of the steady-state one. This paper presents the measurements done on CTF3 using time resolved energy measurements.

TUP082 Bunch Length Measurements in CTF3 588
  • A.E. Dabrowski, S. Bettoni, H.-H. Braun, R. Corsini, S. Döbert, T. Lefèvre, H. Shaker, P.K. Skowronski, F. Tecker
    CERN, Geneva
  • J.J. Jacobson, M. Velasco
    NU, Evanston

The CLIC Test Facility CTF3, being built at CERN by an international collaboration, should demonstrate the feasibility of the CLIC two-beam technology by 2010. One of the issues addressed is the control of the electron bunch length in the whole complex. A bunch length measurement system with good resolution is therefore paramount. Two different systems are presently used in CTF3, based on microwave spectroscopy and on transverse rf deflectors, respectively. In the paper we describe the two systems, we discuss the different experimental methods used and present the results of the latest measurement campaigns.

TUP083 Diagnostics and Measurement Strategy for the CERN Linac 4 591
  • K. Hanke, G. Bellodi, J.-B. Lallement, A.M. Lombardi, B. Mikulec, M. Pasini, U. Raich, E.Zh. Sargsyan
    CERN, Geneva
  • H. Hori
    MPQ, Garching, Munich

Linac 4 is a 160 MeV H- linac which will become the new injector for CERN's proton accelerator chain. The linac will consist of 4 different rf structures, namely RFQ, DTL, CCDTL and PIMS running at 352.2 MHz with 2 Hz repetition rate and 0.4 ms pulse length. A chopper line ensures clean injection into the PS Booster. The combination of high frequency and a high-current, low-emittance beam calls for a compact design where minimum space is left for diagnostics. On the other hand, diagnostics is needed for setting up and tuning of the machine during both commissioning and operation. A measurement strategy and the corresponding choice of the diagnostic devices and their specific use in Linac4 are discussed in this paper.

TUP084 Emittance Measurement Instrument for a High Brilliance H- Ion Beam 594
  • C. Gabor, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon

Funding: Work supported by EU/FP6/CARE (HIPPI) RII3-CT-2003-506395
Among present challenges for beam diagnostics and instrumentation are issues presented by high beam intensity, brightness, resolution and the need to avoid inserting mechanical parts into the beam. This very often means applying non-destructive methods, which avoid interaction between ions and mechanical parts and, furthermore, allow on-line measurements during normal beam operation. The preferred technique for H- beams is the photo-detachment process where (laser) light within the range of 400-1000 nm has a sufficient continuous cross section to neutralize negative ions. The actual diagnostics are then applied to either the neutrals produced or the electrons. The latter are typically used for beam profiles whereas neutrals are more suitable for emittances, and form the subject of the present paper. This provides an overview of the basic features of the diagnostic technique, followed by a more intensive discussion of some experimental and theoretical aspects with emphasis on computing the 4 dimensional emittance using a method called Maximum Entropy (MaxEnt).


slides icon


TUP085 Four-Dimensional Emittance Meter for DC Ion Beams Extracted from an ECR Ion Source 597
  • S.A. Kondrashev, A. Barcikowski, B. Mustapha, P.N. Ostroumov
    ANL, Argonne
  • N. Vinogradov
    Northern Illinois University, DeKalb, Illinois

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
We have developed a pepper pot - scintillator screen system to measure the emittance of low-energy dc beams extracted from an ECR ion source and post-accelerated to an energy of 75 - 90 keV/charge. Different scintillators have been tested and CsI (Tl) was chosen due to its high sensitivity, wide dynamic range and long life-time. The linearity of both the scintillator and the CCD camera has been studied. A LabVIEW code has been developed and used for on-line emittance measurements. Un-normalized rms emittances measured for 209Bi20+ and 209Bi21+ beams with current of 1.0 - 1.5 pnA are usually ~30 π mm.mrad. A complicated structure of multiple images of individual holes has been observed. The innovative combination of a special type of scintillator, a CCD camera and a fast shutter allowed us to create a very efficient emittance meter for low-energy dc ion beams. Using on-line emittance measurements, it was possible to improve the beam quality by re-tuning the ion source conditions. Because of the two-dimensional array of holes in the pepper-pot, this emittance meter can be used to observe and study four-dimensional emittance correlations in beams from ECR ion sources.

TUP086 Initial Commissioning of a Dual-Sweep Streak Camera on the A0 Photoinjector 600
  • A.H. Lumpkin, T.W. Koeth, J. Ruan
    Fermilab, Batavia

Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Characterization of the micropulse bunch lengths and phase stability of the drive laser and the electron beam continue to be of interest at the Fermilab A0 Photoinjector facility. Upgrades to the existing Hamamatsu C5680 streak camera were identified, and initially a synchroscan unit tuned to 81.25 MHz was installed to provide a method for synchronous summing of the micropulses from the drive laser and the optical transition radiation (OTR) generated by the e-beam. A phase-locked delay box was also added to the system to provide phase stability of ~1 ps over tens of minutes. Initial e-beam measurements identified a significant space-charge effect on the bunch length. Recent measurements with a re-optimized transverse emittance allowed the reduction of the micropulse number from 50 to 10 with 1 nC each to obtain a useful streak image. This increased signal also would facilitate dual-sweep operations of the streak camera to explore macropulse effects. Installation of the recently procured dual-sweep module in the mainframe has now been done. Initial commissioning results and sub-macropulse effects in the beams will be presented as available.

TUP089 Electron Beam Timing Jitter and Energy Modulation Measurements at the JLab ERL 606
  • P. Evtushenko, S.V. Benson, D. Douglas, D.W. Sexton
    JLAB, Newport News, Virginia

When operating JLab high current ERL a strong reduction of the FEL efficiency was observed when increasing the average electron beam current. Investigating the FEL efficiency drop-off with the electron beam average current we also have measured the electron beam phase noise and the fast energy modulations. The so-called phase noise is essentially a variation of the time arrival of the electron bunches to the wiggler. That could be a very effective way of reducing the FEL efficiency if one takes in to account that the accelerator is routinely operated with the RMS bunch length of about 150 fs. Under a fast energy modulation we mean a modulation which can not be followed by the FEL due to its time constant, defined by the net gain. Such a modulation also could be a possible cause of the efficiency drop-off. Having the measurements made we could rule out the FEL efficiency drop-off due to either the fast energy modulation or the phase modulation. We also have learned a lot about instrumentation and techniques necessary for this kind of beam study. In this contribution we describe the used instrumentation and present results of the measurements.

TUP090 Optical Diffraction Radiation Measurements at CEBAF 609
  • P. Evtushenko, A. Freyberger
    JLAB, Newport News, Virginia
  • C. Liu
    CASA, newport news
  • A.H. Lumpkin
    Fermilab, Batavia

Optical diffraction radiation (ODR) is a promising technique, which could be used for non interceptive beam size measurements at future light sources. An ODR diagnostic station was designed and installed on a CEBAF transfer beam line. The purpose of the setup is to evaluate experimentally the applicability range for an ODR based non interceptive beam size monitor and to collect data to benchmark numerical modeling of the ODR. An extensive set of measurements were made at the electron beam energy of 4.5 GeV. The ODR measurements were made for both pulsed and CW electron beam of up to 80 uA. The wavelength dependence and polarization components of the ODR were studied using a set of insertable bandpass filters and polarizers. The typical transverse beam size during the measurements was ~150 microns. Complete ODR data, wavelength and polarization, were recorded for different beam sizes and intensities. The beam size was also measured with an optical transition radiation (OTR) as well as wire scanner located next to the ODR station. In this contribution we describe the experimental setup and present first results of the measurements with the comparison to the numerical simulations.

TUP091 Extracting Information Content within Noisy, Sampled Profile Data from Charged Particle Beams: Part II 612
  • C.K. Allen, W. Blokland, S.M. Cousineau, J. Galambos
    ORNL, Oak Ridge, Tennessee

Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Charged-particle beam diagnostic devices such as wire scanners, wire harps, and laser scanners all provide data sets describing the one-dimensional density distributions of the beam at a particular location; these data are commonly called profile data. We use these data for further computations, usually beam properties such as position and size, but to do so requires a certain level of accuracy in the data. Thus, we must make real world considerations as to its information content. Specifically, we consider noise in the data and the fact that it is sampled. The operation of a typical profile device is outlined in order to create a general model for the data sets. Using signal processing techniques we identify the minimal sampling requirements for maintaining information content. Using Bayesian analysis we identify the most probable Gaussian signal within the data (the mean and standard deviation of the Gaussian signal can then be used for computations). Time permitting we present techniques for direct computation of beam properties using noisy, sampled profile data.

TUP092 Laser-Based Profile and Energy Monitor for H- Beams 615
  • R. Connolly, J.G. Alessi, S. Bellavia, W.C. Dawson, C. Degen, W. Meng, D. Raparia, T. Russo, N. Tsoupas
    BNL, Upton, Long Island, New York

A beam profile and energy monitor for H- beams based on laser photoneutralization is being developed at Brookhaven National Laboratory for use on the High Intensity Neutrino Source at Fermilab. An H- ion has a first ionization potential of 0.75 eV and can be neutralized by light from a Nd:YAG laser (λ = 1064 nm). To measure beam profiles, a narrow laser beam is stepped across the ion beam removing electrons from the portion of the H- beam intercepted by the laser. A curved axial magnet field channels these electrons into a Faraday cup. To measure the energy spread of the electrons the laser position is fixed and the voltage on a screen in front of the cup is raised in small steps. We deduce the energy spread of the H- beam by deconvolving the electron spectrum into components from beam energy and from space-charge fields. Measurements are reported from experiments in the BNL linac MEBT at 750 keV.


slides icon


TUP107 Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors 655
  • P. Piot
    Fermilab, Batavia
  • A. Bracke, T.J. Maxwell, D. Mihalcea, M.M. Rihaoui
    Northern Illinois University, DeKalb, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • J.G. Power
    ANL, Argonne

Funding: Work supported by US. Department of Energy, under Contract No. DE-FG02-06ER41435 with Northern Illinois University.
We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC electron injectors and bunch compressors. Techniques to measure first order moment and recover the first order longitudinal transfer map of the injector intricate bunching scheme are presented. Coherent transition radiation diagnotics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model. We finally introduce a new diagnostics capable of measuring time-transverse correlation along a single bunch. Such a diagnostics should be valuable for controlling emittance dilution via transverse wakefield and for properly setting the crab cavities needed for maximizing luminosity for non-zero crossing angle at the interaction point.