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Abstract 
This is a continuation of work in [1]. The objective is to 

design a robust procedure for automating the analysis of 
beam profile data.  In particular, we wish to extract 
accurate values for the beam position and beam size from 
profile data sets. These values may be then used to 
estimate additional beam characteristics such as the 
Courant-Snyder parameters.   

INTRODUCTION 
Profile data are typically obtained from particle-beam 

diagnostic devices such as wire scanner, laser strippers, or 
wire harps. The beam distribution is projected upon 
various spatial axes the effect being marginalization of the 
beam distribution with all variables except the projection 
axis. We provide a model for the data collection process 
which includes random noise components. The goal is to 
design a robust, automated procedure for accurate 
estimation of beam position μ and RMS beam size σ. 
Additionally, we need a process for automatic 
identification of bad data sets (typically such a process 
requires human intervention, a tedious, time consuming, 
and expensive endeavor). This goal is the first 
requirement for automated procedures for Twiss 
parameter estimation, transverse matching, and halo 
identification and mitigation. To realize our current goal 
we must make real world considerations. Specifically, we 
consider information content, noise (randomness), and 
sampling theory. Information content was covered 
previously [1]; we briefly review sampling. 

Sampling and Measurements 
Let f(x) represent the profile distribution where x 

represents some spatial beam axis. Take the axis sampling 
locations to be equidistant so that ݔ௞ ൌ ݄݇, ݇ ൌ 0, … , ܰ െ1,  where ݄ ൐ 0  is the (constant) step length between 
measurements. Making the definition 

௞݂ ؜ ݂ሺݔ௞ሻ 
then ሼ ௞݂ሽ is the sampling of the profile f. Now denote the 
set of profile measurements as ሼ݉௞ሽ௞ୀ଴ேିଵ . These ordered 
measurements correspond, respectively, to the set of 
sampling locations ሼݔ௞ሽ௞ୀ଴ேିଵ.   

Moments 
The ݊௧௛ moment ݔۃ௡ۄ of a distribution ݂ is defined  ݔۃ௡ۄ ؜ 1ܳ  න ାஶݔሻ݀ݔ௡݂ሺݔ

ିஶ ,                       ሺ1ሻ 
where the constant ܳ ؜ ׬    .is the total beam charge ݔ݂݀

Because we are dealing with sampled data we can only 
approximate these values. The beam position μ and RMS 
size σ are the first two moments of the distribution  ߤ ؜ ߪ                                                   ,ۄݔۃ ؜ ݔሺۃ െ   ଵଶ.                                ሺ2ሻۄሻଶߤ
Because we are working with sampled data we normalize 
these quantities by h. Specifically, the continuous 
approximations to beam position and RMS size are ݄ߤ 
and ݄ߪ, respectively.  

We take two approaches for approximating μ and σ, 
1) computing μ and σ directly from the measurements, 
and 2) fitting a Gaussian approximation for f from the 
measurements from which μ and σ are determined. 

The Measurement Process  
Each measurement ݉௞ is composed of both the actual 

beam profile ௞݂ plus a noise component ௞ܹ, where ௞ܹ is 
part of a random process ሼ ௞ܹሽ . This noise introduces 
indeterminacy. Henceforth we can only generalize in 
terms of probabilities and stochastic (or “random”) 
processes. Denote by Eሾڄሿ the expectation operator of the 
random variable ௞ܹ , averaging over its ensemble. Then Ω௞ ؜ Eሾ ௞ܹሿ  is the mean and the quantity ௞ܸ Eሾሺ؜ ௞ܹ െ Ω௞ሻଶሿଵ/ଶ is the standard deviation, or variance. 
Although the values of a random process are not 
deterministic but their statistics are, specifically, Ω௞  and ௞ܸ can be measured through a calibration experiment. 
Most noise processes are modeled as random processes. 

Take the process ሼ ௞ܹሽ  to be a Gaussian distributed 
white noise process with mean Ω  and variance V, then ௞ܹ ൌ ܹ  for all k, and W is Gaussian distributed.  We 
have  ݉௞ ൌ ௞݂ ൅ ܹ, ݇ ൌ 0, … , ܰ െ 1                                 ሺ3ሻ 
where  ܲݎሺܹ ൌ ,ߗ|ݓ ܸሻ ൌ ܸߨ2√1 ݁ିሺ௪ିఆሻమଶ௏మ .                                ሺ4ሻ 

The notation Prሺܯ௞ ൌ ݉௞|Ω, ܸሻ ൌ Pr ሺܹ ൌ ݉௞ െ Ω െ௞݂|Ω, ܸሻ  indicates the probability that the measurement 
(random variable) ܯ௞  at axial position ݔ௞  has value ݉௞ , 
given that the noise has mean Ω and variance V.   

DIRECT MOMENT COMPUTATION   
Because we are dealing with sampled data we can only 

approximate the moments ݔۃ௡ۄ . The simplest form of 
approximation would be to replace the integration in ሺ1ሻ 
with a finite summation.  We begin with a definition to 
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ܵ௡൫ത݇൯ ؜ ෍ሺ݇ െ ത݇ሻ௡݂௞ேିଵ
௞ୀ଴                       ሺ5ሻ 

Then, the ݊௧௛ discrete moment centered at ത݇ is given as  ۃ൫݇ െ ത݇൯௡ۄ ؜ ሚܵ௡ሺത݇ሻ/ܵ଴ሺ0ሻ                                 ሺ6ሻ               
where ത݇ is meant to identify the mean value of k. 

 Computations involving random processes require that 
we properly observe their statistics. Considering the direct 
moment calculations based upon Eq. ሺ5ሻ we define ሚܵ௡൫ ത݇൯ ؜ ෍൫݇ െ ത݇൯௡ሺ݉௞ െ ሻேିଵߗ

௞ୀ଴ ,                    ሺ7ሻ 
the measurement central summations.  Then  തܳ ؜ ሚܵ଴ሺ0ሻ,                                              ߤҧ ؜ ሚܵଵሺ0ሻሚܵ଴ሺ0ሻ ,                                      ሺ8ሻ              ߪത ؜ ሚܵଶሺߤҧሻ/ ሚܵ଴ሺ0ሻ,     
are the computed values of the beam charge, position, and 
RMS size, respectively. The expected values for these 
quantities follow from Eq. ሺ7ሻ , it is straightforward to 
show  

ൣܧ ሚܵ௡ሺത݇ሻ൧ ൌ ෍൫݇ െ ത݇൯௡ேିଵ
௞ୀ଴ ሾሺ݉௞ܧ െ ሻሿߗ ൌ ܵ௡൫ത݇൯          ሺ9ሻ 

since ܧሾڄሿ is a linear operator. This result is exactly that 
which we need. However, consider the variance of ሚܵ௡ሺ ത݇ሻ  ܧ ቂቀ ሚܵ௡൫ത݇൯ െ ܵ௡൫ത݇൯ଶቁቃଵଶ ൌ ௡ܰ൫ത݇൯ܸ,                                ሺ10ሻ 
where ௡ܰ൫ത݇൯ ؜ ∑ ൫݇ െ ത݇൯௡ேିଵ௞ୀ଴  is a form of the Riemann 
zeta function. This function can become prohibitively 
large with relatively moderate values of n and N [1]. 
Ironically, increasing sample count N provides more 
certainty in f but less in ሚܵ௡ሺത݇ሻ. Yet, we can use Eq. (10) to 
compute the variances of Eq. (8). For two random 
variables X and Y with means ݔҧ  and ݕത  and variances ߪ௫ 
and ߪ௬ , respectively, the random variable ܼ ؜ ܺ/ܻ  has 

mean ݖҧ ൌ തݕ/ ҧݔ  and variance ߪ௭ ൌ ҧଶݔ/௫ଶߪҧඥݖ  ൅  തଶݕ/௬ଶߪ
[3]. Thus, we have (noting ଴ܰሺ0ሻ ൌ  ܰሻ      ܸܽݎሾ തܳሿ ൌ ҧሿߤሾݎܸܽ                       ,ܸܰ ൌ ଵሺ߂ҧߤ തܳ, തሿߪሾݎܸܽ            ҧሻܸ,                     (11)ߤ ൌ ଶሺ߂തߪ തܳ, ,ҧߤ         ,തሻߪ
where ߂ଵሺ തܳ, ҧሻߤ ؜ ටܰଶ/ തܳଶ ൅ ଵܰଶሺߤҧሻ/ߪതଶ , 
Thus, the values of Δଵሺ തܳ, ҧሻܸߤ  and Δଶሺ തܳ, ,ҧߤ തሻܸߪ  can be 
used to determine the order of magnitude to which ߤҧ and ߪത are accurate. 

GAUSSIAN PROFILES 
It can be shown in the limit of zero space charge the 

Gaussian profile is a stationary beam distribution [2]. 
Here we make that assumption. We need three parameters 
to identify a Gaussian profile: amplitude A, mean ߤ, and 
standard deviation ߪ. The sampled Gaussian profile is 

௞݂ሺܣ, ,ߤ ,ߪ ሻܤ ൌ ሺ௞ିఓሻమଶఙమି݁ܣ .                                               ሺ12ሻ 
 
where, recall, ߤ and ߪ are normalized by step length h. 

Chi-Squared Fitting 
From Eq. (3) note again that Prሺܯ௞ ൌ ݉௞|Ω, ܸሻ  is 

equal to Pr ሺܹ ൌ ݉௞ െ ௞݂|Ω, ܸሻ . From Eq. ሺ4ሻ , and 
assuming that each measurement ݉௞  is independent, the 
probability of obtaining all the measurements ሼ݉௞ሽ is then 

,ܣ|ሺሼ݉௞ሽݎܲ ,ߤ ሻߪ ൌ ෑ ,ߗ|ሺ݉௞ݎܲ ܸሻேିଵ
௞ୀ଴  ൌ ݁ି ఞమଶ௏మ൫√2ܸߨ൯ே   ሺ13ሻ 

where ߯ଶሺܣ, ,ߤ Ωሻ|ߪ ؜ ෍ሾ݉௞ െ Ω െ ௞݂ሺܣ, ,ߤ ሻሿଶேିଵߪ
௞ୀ଴ .              ሺ14ሻ 

We can use the above equations to determine the most 
probable values of ሺܣ, ,ߤ ሻ which produce measurements ሼ݉௞ሽߪ ; this condition occurs when ߯ଶሺܣ, ,ߤ Ωሻ|ߪ  is a 
minimum. Notice that noise variance V does not explicitly 
occur in ߯ଶ. Consequently, we can take Ω as an additional 
free parameter in the minimization to avoid the separate 
calibration experiment for Ω and V. 

Bayesian Methods 
Bayes’theorem states that ܲݎሺܣ, ,ߤ ,ሼ݉௞ሽ|ߪ ,ߗ ܸሻ ן ,ܣ|ሺሼ݉௞ሽݎܲ ,ߤ ሻߪ ,ܣሺ ݎܲ ,ߤ  ሻߪ

We know the first factor in the right hand side by Eq. (13). 
The final factor above is the prior distribution, consisting 
of all the information we know about ܣ, ,ߤ  prior to the ߪ
measurements. Note that ߤ is independent but A and ߪ are 
correlated, their product proportional to beam charge Q. 
Thus Prሺܣ, ,ߤ ሻߪ ൌ Prሺܣ, ሻߪ Prሺߤሻ. 

For the prior there are several other quantities we can 
infer from the data and our familiarity with the 
experiment. We can use the most reliable deterministic 
quantities in Eq. (8) and Eq. (11) to form the prior 
distribution, namely തܳ  and ߤҧ. (If we find them unusable 
by inspecting variances, we must return to ߯ଶ fitting.) The 
amplitude A is correlated to the span of the measurements, 
however, we can say no more; that is, A is uniformly 
distributed between the extremes. We have ܲݎሺܳ|ߗ, ܸሻ ൌ ܸܰߨ2√1 ݁ିሺொିொതሻమଶேమ௏మ  

,ߗ|ߤሺݎܲ ܸሻ ൌ ଵሺ߂ߨ2√1 തܳ, ҧሻܸߤ ݁ି ሺఓିఓഥሻమଶ௱భమሺொത,ఓഥሻ௏మ 
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,ߗ|ܣሺݎܲ ܸሻ ൌ ቐ 1݉௠௔௫ െ ݉௠௜௡ ܣ   א ሾ݉௠௔௫ െ ݉௠௜௡ሿ0                          ܣ ב ሾ݉௠௔௫ െ ݉௠௜௡ሿ 
To find Pr ሺܣ, ,Ω|ߪ ܸሻ note that A and Q are independent 
so Prሺܣ, ܳሻ ൌ Pr ሺܣሻPrሺܳሻ . The random variables ܣ,  ߪ
and Q are related by ܳ ൌ ܣߪߨ2√ . Then Prሺܣ, ሻߪ ൌPrሺܣሻ Pr൫ܳሺܣ, ሻ൯݀ܳߪ  ,The result .ߪ݀/

,ܣሺݎܲ ሻߪ ൌ ܣܸܰ ݁ି൫√ଶగ஺ఙିொത൯మଶேమ௏మ . 
Putting it all together ܲݎሺܣ, ,ߤ ሼ݉௞ሽሻ|ߪ  

ן ൯ேାଶܸߨ൫√2ܣߨ2√ ݁ି ఞమଶ௏మି൫√ଶగ஺ఙିொത൯మଶேమ௏మ ିሺఓିఓഥሻమଶ௱భ௏మܰ߂ଵ  
Taking the logarithm of the above, multiplying through by 2ܸଶ and ignoring constant terms yields  ܬ ؜ ݈݊ ܣ െ ߯ଶ െ 1ܰଶ ൫√2ܣߪߨ െ തܳ൯ଶ െ ଵଶ߂1 ሺߤ െ ,ܣҧሻଶ. Since the logarithm is a monotonic function, the maximum of J is also a maximum of Prሺߤ ,ߤ ,Ω|ߪ ܸሻ.  Maximizing J with respect to our parameters yields the most probable values of ܣ, ,ߤ  .ߪ

EXAMPLES 
The first example is a profile with obvious (asymmetric) 
halo, shown in Figure 1. The second curve in Figure 1 is 
the Gaussian profile obtained when applying the 
parameters ܣҧ, ,ҧߤ    .ത computed with the direct methodߪ

 

Table 1: Example #1 Beam Parameter Comparison 

Method ߪ ߤ ܣ Ω 
Direct 0.130 61.1±0.279 3.12±1.45 0.3e-3 
Bayes 0.153 62.5 2.30 0.3e-3 ߯ଶ 0.153 61.5 2.18 7.0e-3 ݈ଵ fit 0.181 61.1 3.31 0.0 

 

Table 2: Example #2 eam arameter omparison 

Method ߪ ߤ ܣ Ω 
Direct NaN 53.6±21.2 NaN±156 1.07e-3 
Bayes 0.113 50.4 2.27 1.07e-3 ߯ଶ 0.112 49.4 2.26 1.81e-3 
 

 
Figure 1:  Example #1 profile with direct method 
Gaussian. 

 

 
Table 1 provides a comparison for the different 

methods. In the table we have also included an ݈ଵ  fit to ሼ݉௞ሽ where the sum of the absolute values |݉௞ െ Ω െ ௞݂| 
is minimized. Interestingly enough this gives the same 
results as the direct method.  

The second example is a pathological case involving 
extreme noise (not shown). Neither the direct method nor 
the ݈ଵ  fitting converge. 2 provides a comparison of the 
successful methods while demonstrating the failure of the 
direct method. Noise variances for the examples were 6.81 ൈ 10ିହ and  2.23 ൈ 10ିଷ, respectively. 

 

CONCLUSIONS 
Accuracy for the direct computation of beam position 

and RMS size is quantified. When only the position and 
charge are accurate, they may be used in the Bayesian 
method. If both the position and sizes are inaccurate, then 
the ߯ଶ  approach is always available. Additionally, ߯ଶ 
minimization does not require a calibration for noise 
mean and variance. Both ߯ଶ  minimization and Bayesian 
methods are robust with noisy data. The use of double-
Gaussian profile has been suggested and would appear 
appealing for separating core and halo. 
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