Author: Tomas, R.     [Tomás, R.]
Paper Title Page
MOBC1 Towards Ultra-Low β* in ATF2 38
 
  • M. Patecki, A.V. Aloev, D.R. Bett, M. Modena, R. Tomás
    CERN, Geneva, Switzerland
  • K. Kubo, T. Okugi, T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
  • E. Marín, G.R. White
    SLAC, Menlo Park, California, USA
 
  The Accelerator Test Facility 2 (ATF2) has already demonstrated the feasibility of Final Focus Systems based on the local chromaticity correction scheme and its focusing capabilities by reaching a vertical beam size at the virtual Interaction Point (IP) of less than 50 nm. The value of the chromaticity in ATF2 is comparable with the expected chromaticity in ILC, but 4 times lower than in a design of CLIC. ATF2 gives the unique possibility to test operation at CLIC chromaticity values by reducing the vertical beta function at the IP by a factor of 4 (the inverse proportionality of chromaticity with beta function value at IP is assumed). The experience collected in this way would be beneficial for both ILC and CLIC projects. Simulations show that the multipolar errors and Final Doublet fringe fields spoil the IP beam sizes at ATF2. Either increasing a value of the horizontal beta function or installing a pair of octupole magnets mitigate the impact of these aberrations. This paper summarizes the studies towards the realization of the ultra-low β* optics in ATF2 and reports on the progress of the construction of the octupoles.  
slides icon Slides MOBC1 [1.566 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOBC1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA059 Dynamic Aperture Studies for the FCC-ee 258
 
  • L.E. Medina Medrano
    DCI-UG, León, Mexico
  • R. Martin, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • R. Martin
    Humboldt University Berlin, Berlin, Germany
 
  Funding: Work supported by the Beam Project (CONACYT, Mexico).
Dynamic aperture (DA) studies have been conducted on the latest Future Circular Collider - ee (FCC-ee) lattices as a function of momentum deviation. Two different schemes for the interaction region are used, which are connected to the main arcs: the crab waist approach, developed by BINP, and an update to the CERN design where the use of crab cavities is envisioned. The results presented show an improvement in the performance of both designs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE052 Observations of an Anomalous Octupolar Resonance in the LHC 412
 
  • F.S. Carlier, J.M. Coello de Portugal, A. Langner, E.H. Maclean, T. Persson, R. Tomás, R. Westenberger
    CERN, Geneva, Switzerland
 
  While linear LHC dynamics is mostly understood and under control, non-linear beam dynamics will play an increasingly important role in the challenging regimes of future LHC operation. In 2012, turn-by-turn measurements of large betatron excitations of LHC Beam 2 at injection energy were carried out. These measurements revealed an unexpectedly large spectral line in the horizontal motion with frequency Qx+2Qy. Detailed analyses and simulations are presented to unveil the nature of this spectral line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE054 Developments of the Segment-by-Segment Technique for Optics Corrections in the LHC 419
 
  • A. Langner, J.M. Coello de Portugal, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
 
  Optics correction algorithms will become even more critical for the operation of the LHC at 6.5 TeV. For the computation of local corrections the segment-by-segment technique is used. We present improvements to this technique and an advanced error analysis, which increase the sensitivity for finding local corrections. Furthermore, we will investigate limitations of this method for lower beta-star optics as they will be used in the high-luminosity LHC (HL-LHC) upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE056 OMC Software Improvements in 2014 426
 
  • J.M. Coello de Portugal, F.S. Carlier, A. Langner, T. Persson, P.K. Skowroński, R. Tomás
    CERN, Geneva, Switzerland
 
  We present the LHC Optics Measurement and Corrections (OMC) software developments done during 2014 on stability, performance and usability. This software is used to analyze turn-by-turn data and compute optics corrections to get the best performance of the LHC. The main developments have been an automatic local correction script to get faster and more accurate corrections in the interaction regions, a self contained test for the whole software package to avoid mistakes during the software development and the improvements in the software quality and efficiency of the Segment by Segment technique script. We also present a study of the code quality in its current status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE057 Optics Measurement using the N-BPM Method for the ALBA Synchrotron 430
 
  • A. Langner, J.M. Coello de Portugal, R. Tomás
    CERN, Geneva, Switzerland
  • G. Benedetti, M. Carlà, U. Iriso, Z. Martí
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The N-BPM method recently developed for the LHC has significantly improved the precision of optics measurements which are based on beam position monitor (BPM) turn-by-turn data. The main improvement is owed to the consideration of correlations for statistical and systematic error sources, as well as increasing the amount of BPM combinations for one measurement. We present how this technique can be applied at light sources like ALBA, and compare the results with other methods.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE063 Orbit Correction in the CERN PS Booster 449
 
  • M. McAteer, E. Benedetto, C. Carli, G.P. Di Giovanni, B. Mikulec, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no (PITN-GA-2011-289485-OPAC).
Prior to the Long Shutdown of 2013-2014 (LS1), control of the closed orbit in the four rings of the CERN PS Booster (PSB) was achieved by adjusting the alignment of several focusing quadrupoles. After a set of orbit corrector dipoles was installed, a major realignment campaign was undertaken to remove these intentional quadrupole offsets and any other magnet misalignments. This paper summarizes the effects of the magnet realignment on the closed orbit in the PSB and the results of closed orbit correction with corrector dipoles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE065 Contribution of Optical Aberrations to Spot-size Increase with Bunch Intensity at ATF2 455
 
  • M. Patecki, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • K. Kubo, S. Kuroda, T. Naito, T. Okugi, T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
  • M. Patecki
    Warsaw University of Technology, Warsaw, Poland
  • G.R. White
    SLAC, Menlo Park, California, USA
 
  A primary goal of ATF2 (Accelerator Test Facility) is to demonstrate a low vertical beam size at the interaction point (IP) of about 37 nm. Measurements over the past years indicate that the ATF2 vertical beam size strongly rises with bunch intensity. Several different origins of this increase are considered, e.g. wakefields occurring between the ATF damping ring and the IP, and/or intrabeam scattering (IBS) causing the increase of transverse emittances and energy spread in the damping ring with the increase of the bunch intensity. In this paper we address the second possibility. Past measurements and simulations of the IBS effects in the ATF are used to model the intensity-dependent initial emittances and energy spread at the entrance of the final focus. Particle tracking simulations predict the IP vertical beam size growth expected from the known optical aberrations for initial beam parameters corresponding to varying bunch intensities. Comparing simulation results with emittance measurements at different locations allows us to draw some conclusions about the impact of IBS in the damping ring on the IP spot size, and about possible single-bunch wakefields in the ATF2.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE079 Tracking Studies in the LHeC Lattice 502
 
  • E. Cruz Alaniz, D. Newton
    The University of Liverpool, Liverpool, United Kingdom
  • E. Cruz Alaniz, D. Newton
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485
The Large Hadron Electron Collider (LHeC) is a proposed upgrade of the LHC to provide electron-proton collisions and explore a new regime of energy and luminosity for nucleon-lepton scattering. A nominal design has previously been presented, featuring a lattice and optical configuration to focus one of the proton beams of the LHC (reaching a value of β*=10 cm) and to collide it head-on with an electron beam to produce collisions with the desired luminosity of L=1033 cm-2 s-1. The proton beam optics is achieved with the aid of a new inner triplet of quadrupoles at L*=10 m from the interaction point and the extension of the Achromatic Telescopic Squeezing (ATS) Scheme used for the High Luminosity-LHC project. The flexibility of this design has been studied in terms of minimising β* and increasing L*. In this work, particle tracking is performed in a thin lens approximation of the LHeC proton lattice to compute the dynamic aperture and perform frequency map analysis for different types of chromatic correction schemes, in order to find the one who will provide the most beam stability and to study the effects of non linearities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA004 Oide Limit Mitigation Studies 781
 
  • O.R. Blanco-García, P. Bambade
    LAL, Orsay, France
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Particle radiation when traversing a focusing quadrupole limits the minimum achievable beam size, known as the Oide limit. This effect may be compensated by a pair of multipoles which reduce the impact of the energy loss in the vertical beam size. Simulations in PLACET using the CLIC 3 TeV QD0 and L⃰ show a reduction of (4.3 ± 0.2)% in the vertical beam size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY001 Interaction Region for a 100 TeV Proton-Proton Collider 1996
 
  • R. Martin, R. Tomás
    CERN, Geneva, Switzerland
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
 
  As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, FCC-hh, running at center-of-mass energies of up to 100 TeV, pushing the energy frontier of fundamental physics to a new limit. At a circumference of 80-100 km, this machine is planned to use the same tunnel as FCC-ee, a proposed 90-350 GeV high luminosity electron-positron collider. This paper presents the design progress and technical challenges for the interaction region of FCC-hh.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY032 Study of Muon Backgrounds in the CLIC Beam Delivery System 2075
 
  • F.B. Pilicer, E. Pilicer, İ. Tapan
    UU, Bursa, Turkey
  • H. Burkhardt, L. Gatignon, A. Latina, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  We describe the detailed modelling of muon background generation and absorption in the CLIC beam delivery system. The majority of the background muons originates in the first stages of halo collimation. We also discuss options to use magnetised cylindrical iron shields to reduce the muon background flux reaching the detector region.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY040 Comparison of Beam Sizes at the Collimator Locations from Measured Optics and Beam-based Collimator Alignment at the LHC 2101
 
  • G. Valentino, R. Bruce, A. Langner, S. Redaelli, R. Tomás
    CERN, Geneva, Switzerland
 
  At the LHC, the collimation hierarchy is defined in units of the betatron beam size using the sizes at each collimator location. The beam size at a given collimator can be inferred from the gap measurement during beam-based alignment campaigns, when the collimator touches a reference beam halo defined with the primary collimators. On the other hand, the beta functions at each collimator are also measured as a part of the standard LHC optics validation. This paper presents a comparison of the beam size measurements at the collimator locations applying these two techniques for different machine configurations. This work aims at determining which is the most reliable method for setting the collimator gaps at the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY042 Non-linear Coupling Studies in the LHC 2105
 
  • T. Persson, Y.I. Levinsen, E.H. Maclean, R. Tomás
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
 
  The amplitude detuning has been observed to decrease significantly as the horizontal and vertical tunes are approaching each other. This effect is potentially harmful since it might cause a loss of Landau damping, hence giving rise to instabilities. The measured tune split (Qx-Qy) versus amplitude is several times bigger than what can be explained with linear coupling. In this paper we present studies performed to identify the dominant sources of the non-linear coupling observed in the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY043 Analysis of Intensity-dependent Effects on LHC Transverse Tunes at Injection Energy 2108
 
  • R. De Maria, M. Giovannozzi, T. Persson, R. Tomás
    CERN, Geneva, Switzerland
  • Y. Wei
    IHEP, Beijing, People's Republic of China
 
  The LHC Run I has provided a huge amount of data that can be used to deepen the understanding of the beam behaviour. In this paper the focus is on the analysis of transverse tunes at injection energy to detect signs of intensity-dependent effects. BPM data, recording the injection oscillations of the operational beams during the ring-filling phase, have been analysed in detail to enable extracting useful information about the tune shift vs. injected beam intensity. The data processing and the results are discussed in detail, including also possible implications for future operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY060 The FCC-ee Study: Progress and Challenges 2165
 
  • M. Koratzinos
    DPNC, Genève, Switzerland
  • S. Aumon, C. Cook, A. Doblhammer, B. Härer, B.J. Holzer, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • L.E. Medina Medrano
    UGTO, Leon, Mexico
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  The FCC (future circular collider) study represents a vision for the next large project in high energy physics, comprising a 80-100 km tunnel that can house a future 100TeV hadron collider. The study also includes a high luminosity e+e collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase and during the next three years a conceptual design report will be prepared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY061 Combined Operation and Staging Scenarios for the FCC-ee Lepton Collider 2169
 
  • M. Benedikt, B.J. Holzer, E. Jensen, R. Tomás, J. Wenninger, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • K. Ohmi, K. Oide
    KEK, Ibaraki, Japan
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  FCC-ee is a proposed high-energy electron positron circular collider that would initially occupy the 100-km FCC tunnel that will eventually house the 100 TeV FCC-hh hadron collider. The parameter range for the e+/e collider is large, operating at a cm energy from 90 GeV (Z-pole) to 350 GeV (t-tbar production) with the maximum beam current ranging from 1.5 A to 6 mA for each beam, corresponding to a synchrotron radiation power of 50 MW and a radiative energy loss varying from ~30 MeV/turn to ~7500 MeV/turn. This presents challenges for the rf system due to the varying rf voltage requirements and beam loading conditions. In this paper we present a possible gradual evolution of the FCC-ee complex by step-wise expansion, and possibly reconfiguration, of the superconducting RF system. The performance attainable at each step is discussed, along with the possible advantages and drawbacks.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)