6th International Particle Accelerator Conference 2015

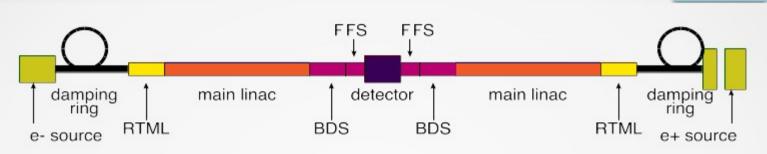
Towards ultra-low β* in ATF2

Marcin Patecki^{1,2}, A. Aloev¹, K. Kubo^{4,5}, S. Kuroda^{4,5}, E. Marin³, M. Modena¹, T. Okugi^{4,5}, T. Tauchi^{4,5}, N. Terunuma^{4,5}, R. Tomás¹, G. White³

¹ CERN, The European Organization for Nuclear Research, Geneva, Switzerland.

² Warsaw University of Technology, Faculty of Physics, Poland.

³ SLAC, National Accelerator Laboratory, California, USA.


⁴ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan.

⁵ SOKENDAI, School of High Energy Accelerator Science, Hayama, Japan.

Outline

- Introduction
 - Final focus system for future linear colliders
 - Accelerator Test Facility (ATF2)
- Motivation for ultra-low β^* ($1\beta_x 0.25\beta_y$) in ATF2
- Investigation of ultra-low β* feasibility:
 - IP vertical beam size predictions and mitigation methods
 - Correction of the magnetic multipole fields and quadrupole fringe fields
 - Octupole magnets installation
- Half β_v^* study ($10\beta_v^0.5\beta_v$) in ATF2 December'14 run
 - Optics design
 - Estimation of β^* values
 - Beam size tuning and measurements
- Future plans
- Conclusions

Final focus system for future linear colliders

• High luminosity is one of the most important requirements for particle colliders:

$$L = \frac{N_p^2 n_b f_{rep}}{4 \pi \sigma_x^{IP} \sigma_y^{IP}} H_D$$

$$N_p - \text{number of particles per bunch}$$

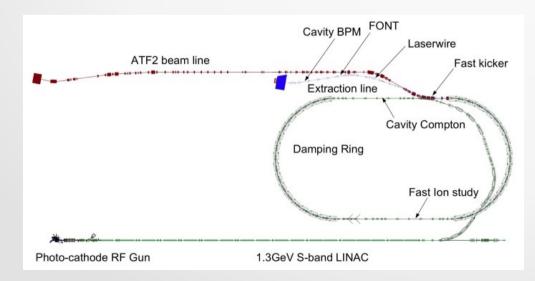
$$n_b - \text{number of bunches per train}$$

$$f_{rep} - \text{trains repetition rate}$$

$$\sigma^{IP} - \text{transverse beam size at the IP}$$

$$H_p - \text{luminosity enhancement factor}$$

- Beam delivery system (BDS) acts on the beam coming from the main linac and prepares the beam (collimation, diagnostics, matching) for focusing.
- Final focus system (FFS) is the last part of BDS where two strong quadrupole magnets focus the beam to be collided with a smallest possible beam size.

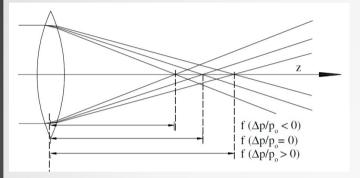

$$\sigma_{x,y}^{IP} = \sqrt{\frac{\beta_{x,y} \varepsilon_{x,y}}{\gamma}}$$

 β – optical function, characterizes the focusing strength ϵ – beam emittance γ – relativistic factor

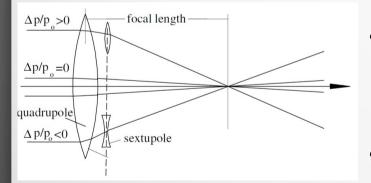
04.05.2015, IPAC'15

Accelerator Test Facility ATF2

- Test facility for future linear colliders located in KEK in Japan. [1]
- First Final Focus beam line using a local chromaticity correction scheme. [2]
- World record of smallest vertical beam size: < 45 nm (design is 37 nm). [3,4]
- Soon, first Final Focus beam line using octupole magnets.



04.05.2015, IPAC'15


Marcin Patecki

Chromaticity correction

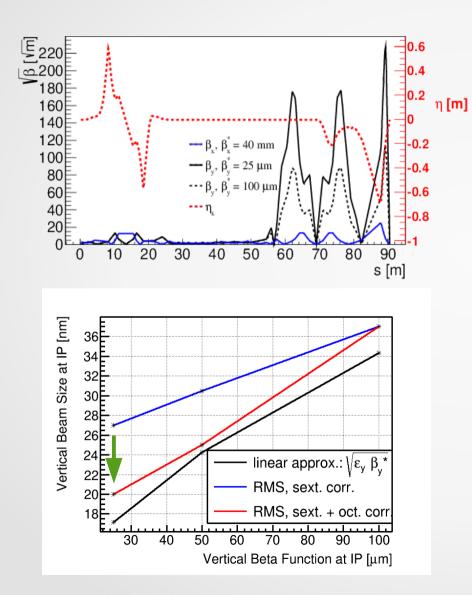
- Chromatic aberration causes the off-momentum particles to be not exactly focused at the IP and therefore significant spot size growth.
- The vertical displacement at the IP is proportional to the length of the last drift, beam momentum spread and inversely proportional to β^{*} value:

$$\frac{\Delta y_{rms}^*}{\sigma_y^*} \approx \frac{L^*}{\beta_y^*} \sigma_{\delta} \approx \zeta_y \sigma_{\delta}$$

• The beam size growth due to chromaticity and momentum spread:

 $\sigma_y^* = \sigma_{y,0}^* \sqrt{1 + \zeta_y^2 \sigma_\delta^2}$

- Chromaticity can be corrected with sextupole magnets.
- IP vertical beam size in Accelerator Test Facility (ATF2):
 - <u>With chromaticity correction: 37 nm</u> (design)
 - Without chromaticity correction 450 nm


Motivation for ultra-low β^* in ATF2

- ATF2 ultra-low β^* optics is a project [5] to test the tunability of the FFS at the chromaticity level comparable with CLIC.
 - Larger chromaticity ξ makes the FFS more difficult to operate.
 - Level of chromaticity ξ_{v} in ATF2 is comparable to ILC.
- Ultra-low β* lattice also gives the opportunity to lower the beam size down to about 20 nm and collect the experience with strong beam focusing and small beam at the IP.

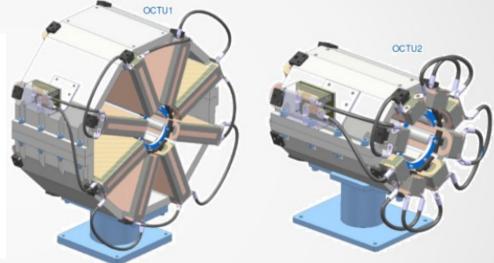
- Utilization of octupole magnets for stronger beam focusing will be tested.

	β_{y}^{*} [mm]	$\sigma_{y, design}[nm]$	L* [m]	$\xi_{y} \sim (L^{*}/\beta_{y}^{*})$	
ILC	480	5.9	3.5/4.5	7300/9400	
CLIC	70	1	3.5	50000	
ATF2 nominal	100	37 (44 ^a)	1	10000	^a measured, June 2014
ATF2 half β_y^*	50	25 ^b	1	20000	^b using octupoles
ATF2 ultra-low β^*	25	20 ^b	1	40000	

IP vertical beam size for ultra-low β^*

Decreased β_y^* causes the increase of β_y in the Final Focus region. In consequence the beam size is larger in the FF and more sensitive to beam line imperfections. It was checked that:

- **magnetic multipole fields [6]** and
- fringe fields [7]


are limiting factors for IP beam size.

Proposed mitigation method:

- Installation of two octupole magnets
 - Corrects both multipole fields and fringe fields.
 - Makes sextupoles strength adjustment easier and therefore allows for more effective chromaticity correction.
 - Bring the IP beam size from 27nm to 20 nm for ultra-low β* lattice.

Octupole magnets for ATF2

- Octupoles will be installed in the dispersive and non-dispersive regions with 180° difference of phase advance [8]:
- OCT1 at 86.41 m between QD2AFF and SK1FF (3.8 m) • OCT2 at 71.85 m between QD6FF and SK3FF (1.0 m) 60000 0.1 50000 n -0.1 β_y 40000 -0.2 [ш] և β [m] 30000 ήx -0.3 -0.4 20000 -0.5 10000 -0.6 0 -0.7 75 80 85 55 60 65 70 50 90 s [m]
- Magnets design was done at CERN [9]:

- OCT1 is planned to be install on a mover, with initial tilt of 0.5 deg.
- Octupoles are air cooled and their yokes are composed of two halves for mounting simplicity.

	G [T/m ³]	tunability	magnetic length [mm]	aperture radius [mm]	ampere-turns per coil [A]	# of turns per coil	I [A]	power max. [W]
OCT1	6820	-90%/+20%	300	52	1800	60	30	152
OCT2	708	-90%/+20%	300	52	180	6	30	15.2
04.05.2015, IPAC'15			N	Iarcin Patecki				

slide 8

Octupole magnets for ATF2

- Octupoles will be installed in the dispersive and non-dispersive regions with 180° difference of phase advance:
- OCT1 at 86.41 m between QD2AFF and SK1FF (3.8 m) OCT2 at 71.85 m between OD6EE and SK3EE (1.0 m).

Magnets design was done at CERN:

OCTU1

60000 50000 **Octupole magnets are now in procurement phase.** 40000 β [m] 30000 **Installation in ATF2 is expected for the beginning of 2016.** ήv 20000 10000 0 55 60 65 50 70 75 90 80 85

OCT1 is planned to be install on a mover, with initial tilt of 0.5 deg.

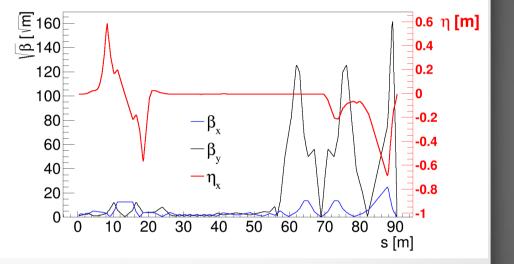
s [m]

Octupoles are air cooled and their yokes are composed of two halves for mounting simplicity.

	G [T/m ³]	tunability	magnetic length [mm]	aperture radius [mm]	ampere-turns per coil [A]	# of turns per coil	I [A]	power max. [W]
OCT1	6820	-90%/+20%	300	52	1800	60	30	152
OCT2	708	-90%/+20%	300	52	180	6	30	15.2
04.05.2015, IPAC'15			Ν	Iarcin Patecki				

OCTU2

Misalignments of octupole magnets


	ΔX	ΔY	$\Delta \sigma_{y}^{*}$	ΔK_2	Dist. to sext.	
OCT1	500 µm	0	2%	1% (SF1FF)	86.5 cm	
OCT1	0	500 µm	3%	300% (SK1FF)ª	57 cm	
OCT2	500 µm	0	0.25%	1.5% (SF5FF)	1.5 m	
OCT2	0	500 µm	0.4%	22% (SK3FF)ª	54 cm	

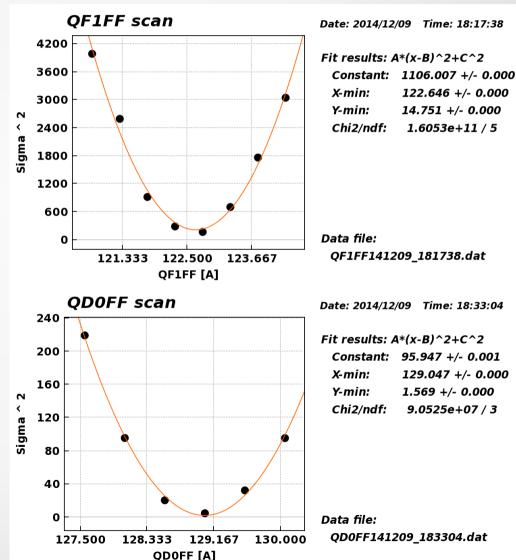
^aStrength of skew sextupoles is well within their limits

- Octupoles installation on movers is considered.
- However, the misalignments of up to 500 µm can be corrected by adjusting the strengths of the nearby sextupole magnets.
- Alignment with accuracy much better than 500 µm is expected for the installation of octupoles in ATF2.

Half β_v^* study in ATF2 December'14 run

- For the December 2014 run the 10β_x0.5β_y optics (40mm, 50µm) was applied;
- **Expected IP vertical beam size: 26 nm**, after very fine tuning of sextupole magnets and assuming vertical emittance $\varepsilon_y = 12 \text{ pm}.$

ATF2 December'14 run: β_v^* estimation


 The values of IP β were estimated from the beam divergence using the QF1FF and QD0FF scans:

 $\beta \approx \frac{\varepsilon}{\sigma^2} (\Delta f)^2$


Δf – distance from nominal IP
For measured (OTR) vertical emittance of 29 +/- 5 pm, the β_y* estimated from scans

 β_{y}^{*} = 52 +/- 8 µm

• We suspect that the measured emittance is overestimated which affects the value of β_y^* . Good knowledge of emittance is needed.

ATF2 December run: IP beam size tuning

- Tuning with the use of linear knobs.
- After 8h of tuning the vertical beam size measured in 174 degree mode was **62.5 ± 1.8 nm**.

Far from expected value of about 41 nm (assuming measured emittance).

- Modulation was lost during the pitch scan because of a problem with the lasers position adjustment;
- We tried to repeat the tuning but it was not successful because of the problem with lasers;
- However, this measured beam size is
 consistent with 52 nm (design is 37 nm)
 measured in November'14 for 10β_x1β_y optics
 (which in principle should be easier to operate).

Remarks on lower β_v^* study

- The optics applied to the machine is close to the design.
- Further optimisation of the optics is planned for the next ATF2 runs.
- We were very unfortunate with the lower β_{v}^{*} experiment so far:
 - In the 2nd week of December'14, the experiment was stopped due to the IP Beam Size Monitor failure;
 - In the 3rd week of December'14, the experiment was stopped due to the extraction kicker failure;
 - During the April'15 run, the experiment was delayed because of the QD0FF mover failure and later interrupted after serious power drop caused by a thunderstorm.

Experience from the half β_v^* experiment

- Larger chromaticity requires very fine 2nd order beam size tuning with the use of normal and skew sextupoles.
- The IP Beam Size Monitor (IPBSM) performance plays a key role in the realisation of this study because it is used for the beam size minimisation.
- Stronger focusing increases the beam divergence and angular jitter at the IP causing larger signal jitters of IPBSM and therefore spoiling its performance.
- Precise measurements and control of beam emittance is critical.

Future plans

- Final verification of the half β_v^* optics.
- Beam size minimisation.
- More detailed study with the half β_y* optics (dispersion measurements, orbit response measurements, ...).
- Experiment with $1\beta_x^*$ optics ($10\beta_x^* = 40$ mm is currently used).
- Installation of octupoles (beginning of 2016).
- Study of the ultra-low β^* optics ($\beta_x^* = 4 \text{ mm}$, $\beta_y^* = 25 \mu \text{m}$).

Conclusions

- The simulations of the ultra-low β* lattice show that the multipole field errors and final doublet fringe fields spoil the IP beam size.
- The use of octupole magnets is a common solution for lowering the beam size. The octupoles design was done at CERN and they are already in the procurement phase.
- The first experience with half β_y^* optics was collected during the December 2014 and April 2015 runs in ATF2.
- High performance of the IP Beam Size Monitor is necessary.
- Control over the beam emittance is essential.
- The applied $10\beta_x 0.5\beta_y$ (β values at the IP: 40mm, 50 µm) optics was validated by evaluating the $\beta_v^* = 52 + 7.8 \mu m$.

Thank you for listening!

Many thanks to the ATF2 Collaboration!

References

[1] B. I. Grishanov et al. (ATF2 Collaboration), "ATF2 Proposal",2005.

[2] P. Raimondi and A. Seryi, "Novel Final Focus Design for Future Linear Colliders", Phys. Rev. Lett.86, 3779 (2001).

[3] S. Kuroda, "ATF2 for final focus test beam for future linear colliders", ICHEP 2014.

[4] K. Kubo et al. (ATF2 Collaboration), "Towards an International Linear Collider: Experiments at ATF2", IPAC 2014.

[5] D. Angal-Kalinin, S. Bai, P. Bambade, H. Braun, J.P. Delahaye, et al., "Exploring ultra-low beta* values in ATF2 – R&D Programme proposal." 2008, pp.1-6. <in2p3-00308662>.

[6] E. Marin et al., "Design and high order optimization of the Accelerator Test Facility lattices", Phys. Rev. St. Accel. Beams 17, 021002, 2014.

[7] M. Patecki, R. Tomás, "Effects of quadrupole fringe fields in final focus systems for linear colliders", Phys. Rev. St. Accel. Beams 17, 101002 (2014).

[8] E. Marin et al., "Specifications of the octupole magnets required for the ATF2 ultra-low β lattice", SLAC Technical Note: SLAC-TN-14-019.

[9] M. Modena, "Update on 2 Octupoles Procurement for ATF2 Final Focus Systems", 18th ATF2 Project meeting 2015.