Keyword: quadrupole
Paper Title Other Keywords Page
TUABC2 Global Optimization of the ANKA Lattice Using Multiobjective Genetic Algorithms (MOGA) emittance, optics, lattice, storage-ring 72
 
  • M. Streichert, N. Hiller, E. Huttel, V. Judin, B. Kehrer, M. Klein, S. Marsching, C.A.J. Meuter, A.-S. Müller, M.J. Nasse, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  Funding: This work has been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320.
The optimization of a storage ring lattice is a multiobjective problem, since the parameter space of possible solutions can be very large and a high number of constraints have to be taken into account during the optimization process. In this paper we used Genetic Algorithms (GA) and MultiObjective Genetic Algorithms (MOGA), which can solve such problems very efficiently and rapidly, to find the optimized settings for the ANKA storage ring lattice.
 
 
TUADC3 Implementing New Beam Line Elements into a Moment Method Beam Dynamics Code rfq, simulation, insertion, radio-frequency 104
 
  • T. Roggen, H. De Gersem, B. Masschaele
    KU Leuven, Kortrijk, Belgium
  • W. Ackermann, S. Franke, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This research is funded by grant "KUL 3E100118" "Electromagnetic Field Simulation for Future Particle Accelerators".
Developing beam dynamics simulation tools using the moment method has advantages in terms of precision and efficiency when interests lie in average or rms dimensions of the beam, projected emittances or total energy. The moment method implemented in the V-Code solves the Vlasov equation by time integration, from an initial particle distribution represented by a discrete set of characteristic moments, accounting for all acting internal and external forces along the particle's path. The moment method delivers highly accurate beam dynamics results within a very small CPU time. This article proposes, illustrates and validates a new beam line element for a radiofrequency quadrupole (RFQ) for insertion in the V-Code. The focus will be on the RFQ cell structure, the electric field distribution and the insertion of the field distribution in the moment code.
 
slides icon Slides TUADC3 [4.387 MB]  
 
WEP06 Particle Tracking in Electrostatic Fields with Energy Conservation simulation, controls, storage-ring, lattice 149
 
  • A.N. Ivanov
    St. Petersburg State University, St. Petersburg, Russia
 
  The key idea of the research is to consider spin dynamics in electrostatic fields. Due to the fact, that spin rotation frequency explicitly depends on velocity of the particle and its kinetic energy is changed in electrostatic fields it is important to use some technique that provides both conservation energy and symplicticity condition. An appropriate mathematical model is described and the results of numerical calculation are shown. In conclusion, fringe fields influence is examined and compared with case of ideal fields.  
 
WEP15 Tools for Analysis and Improvement of Linac Optics Design for High Brightness Electron Beams optics, focusing, controls, emittance 170
 
  • S. Di Mitri, M. Cornacchia, C. Scafuri
    ELETTRA, Basovizza, Italy
 
  The optics design of single pass high brightness electron linacs usually aims at the preservation of the transverse emittance. Collective effects mainly impose constraints to the optics design such as at the low-beta interaction points in colliders and magnetic compressors in FELs. Other constraints are from the trajectory correction scheme, performance of diagnostics, collimation systems and physical space limitations. Strong focusing is typically prescribed for all the aforementioned cases, although it may hamper the main goal of emittance preservation through the excitation of optical aberrations. Strong focusing also potentially leads, through focusing errors, to large beam optics mismatch. Based on these sometimes conflicting requirements, we have developed tools for the analysis and improvement of electron linac optics. They are based on the Elegant [1] code and allow the user to identify:
  1. local sources of phase space distortions and emittance dilution,
  2. lattice areas particularly sensitive to focusing errors,
  3. poor trajectory steering.
The analysis does not require massive particle tracking since it deals with the single particle motion in the normalized phase space.

[1] M. Borland, Advanced Photon Source LS-287 (2000).
 
 
WEACI1 Design and Applications of the Bmad Library for the Simulation of Particle Beams and X-Rays simulation, lattice, solenoid, controls 179
 
  • D. Sagan
    CLASSE, Ithaca, New York, USA
 
  The Bmad software library has been developed for simulations of high-energy particle beams along with simulations of the x-rays produced by the particle beams. Owing to its modular, object-oriented design, Bmad is now used in a number of programs at Cornell's Laboratory for Elementary-Particle Physics. This paper will discuss the design of the Bmad library. Features such as the ability to have overlapping elements, the ability to define in a lattice file the action of control-room ‘‘knobs'', and the ability to choose from a number of different tracking options on an element-by-element basis have all contributed to a versatile simulation environment that eases the task of programmers and users using Bmad. Also discussed is the uses that Bmad has been put to including synchrotron radiation tracking with reflections from the vacuum chamber walls, spin tracking, beam break-up instability, intra-beam scattering, etc. Besides simulation and design programs, Bmad can be used in control programs to do such things as orbit and Twiss correction calculations.  
slides icon Slides WEACI1 [1.884 MB]  
 
WEACC3 Matrix Formalism for Long-term Evolution of Charged Particle and Spin Dynamics in Electrostatic Fields lattice, simulation, storage-ring, dipole 187
 
  • A.N. Ivanov, S.N. Andrianov
    St. Petersburg State University, St. Petersburg, Russia
 
  The matrix formalism as a numerical approach for solving of ODE equations is considered. It is a map method and has several advantages over classical step-by-step integration methods. This approach allows to present the solution as set of numerical matrices. A complete derivation of the equations this method is based on will be shown. Problems of symplectification and computing performance are discussed. We have developed an application that provides a tool for differential equations solving. The developed program allows to generate the final programming codes on C++, Fortran, MATLAB, C#, Java languages. The given approach is applied to long-term evolution of charged particle and spin dynamics in electrostatic fields.  
slides icon Slides WEACC3 [1.441 MB]  
 
THAAI3 MAD-X Progress and Future Plans lattice, multipole, optics, simulation 211
 
  • L. Deniau
    CERN, Geneva, Switzerland
 
  The design efforts for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC) will require significant extensions of the MAD-X code widely used for designing and simulating particle accelerators. These changes are framed into a global redesign of the MAD-X architecture meant to consolidate its structure, increase its robustness and flexibility, and improve its performance. Some examples of recent extensions to MADX like the RF-multipole element will be presented. Improvement for models and algorithms selection providing better consistency of the results and a wider range of use will be discussed. The computation efficiency will also be addressed to better profit of recent technologies. In this paper, we will describe the last improvements and the future plans of the project.  
slides icon Slides THAAI3 [6.830 MB]  
 
THP09 Global Scan of All Stable Settings (GLASS) for the ANKA Storage Ring emittance, optics, dynamic-aperture, storage-ring 239
 
  • M. Streichert, N. Hiller, E. Huttel, V. Judin, B. Kehrer, M. Klein, S. Marsching, C.A.J. Meuter, A.-S. Müller, M.J. Nasse, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  Funding: This work has been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320.
The design of an optimal magnetic optics for a storage ring is not a simple optimization problem, since numerous objectives have to be considered. For instance, figures of merit could be tune values, optical functions, momentum compaction factor, emittance, etc. There is a technique called “GLobal scan of All Stable Settings” (GLASS), which provides a systematic analysis of the magnetic optics and gives a global overview of the capabilities of the storage ring. We developed a parallel version of GLASS, which can run on multi-core processors, decreasing significantly the computational time. In this paper we present our GLASS implementation and show results for the ANKA lattice.
 
 
FRAAC3 Status of the HOM Calculations for the BERLinPro Main Linac Cavity HOM, cavity, dipole, linac 278
 
  • A. Neumann, W. Anders, J. Knobloch
    HZB, Berlin, Germany
  • K. Brackebusch, T. Flisgen, T. Galek, K. Papke, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  Funding: Work supported by Federal Ministry for Research and Education BMBF under contract 05K10HRC
The Berlin Energy Recovery Linac Project (BERLinPro) is designed to develop and demonstrate CW LINAC technology and expertise required to drive next-generation Energy Recovery Linacs (ERLs). Strongly higher order mode (HOM) damped multicell 1.3 GHz cavities are required for the main linac. The cavity under study is an integrated design of the Cornell base cell with JLab HOM waveguide couplers. Modifications to the end group design have also been pursued, including the substitution of one waveguide by a HZB-modified TTF-III power coupler. In this talk the progress in HOM calculations to avoid beam-breakup instabilities for the favored cavity structure will be presented.
 
slides icon Slides FRAAC3 [15.439 MB]