Keyword: linac
Paper Title Other Keywords Page
SURDI1 Computational Challenges in ESS cavity, cryomodule, rfq, simulation 1
 
  • H. Danared, M. Eshraqi, E. Laface, R. Miyamoto, S. Molloy, A. Ponton
    ESS, Lund, Sweden
 
  The European Spallation Source, to be built in Lund, Sweden, will be based on a superconducting proton linac. Top-level linac parameters of 2.5 GeV energy, 50 mA pulse current, 14 Hz pulse repetition rate and 2.86 ms pulse length result in 5 MW average beam power and 125 MW peak power. General challenges for the accelerator design and construction range from minimizing beam losses to prototyping, manufacturing and installing the large quantity of RF power soures. The presentation will give an overview of the ESS project and give specific examples of computational challenges related to the beam dynamics of the linac.  
slides icon Slides SURDI1 [11.623 MB]  
 
MOSBC2 Linac Beam Dynamics Simulations with PyORBIT simulation, lattice, space-charge, cavity 20
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725
Linac dynamics simulation capabilities of the PyORBIT code are discussed. The PyORBIT is an open source and a further development of the original ORBIT code that was developed and used for design, studies, and commissioning of the SNS ring. The PyORBIT code like the original one has a two layers structure. The C++ is used to perform time consuming computations, and a program flow is controlled from the Python language shell. The flexible structure allowed using the PyORBIT also for linac dynamics simulations. The benchmark of the PyORBIT with Parmila and the XAL Online model is presented.
 
slides icon Slides MOSBC2 [1.857 MB]  
 
TUABI1 The TRIUMF Optimization Platform and Application to the E-linac Injector TRIUMF, simulation, cryomodule, FEL 67
 
  • C. Gong, Y.-C. Chao
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  Funding: Funding is received from Natural Sciences and Engineering Research Council of Canada for this research.
Multi-objective genetic algorithms (MOGA) have demonstrated their usefulness for the global optimization of accelerator design using Elegant and Astra. A MOGA platform developed at TRIUMF seeks to expand the capabilities of such tools by allowing multiple simulation engines to be used. The TRIUMF optimization software platform was applied to the transport design of an injection line leading from a cryomodule to the beam dump. The optimization involves two simulation engines, Astra and MAD-X, and demonstrates the ability for the platform to handle multi-engine optimization for a realistic problem. Results of the optimization are shown.
 
slides icon Slides TUABI1 [1.132 MB]  
 
TUABC3 Multi-Objective Genetic Optimization of Linac Beam Parameters for a seeded FEL FEL, laser, electron, simulation 75
 
  • M. Apollonio, R. Bartolini, I.P.S. Martin
    Diamond, Oxfordshire, United Kingdom
 
  The optimization of the beam dynamics in a Linac for free electron lasers (FELs) can be a very time consuming process, in which several parameters of the acceleration and compression sections need to be varied simultaneously. The optimization procedure is required to tackle different and often opposite goals at a time, depending on the adopted FEL scheme. As such, multi-objective genetic algorithms are an interesting choice, given their ability to targeting several, often conflicting objectives. We have studied an optimization strategy based on a combination of multi-objective optimization with a fast parallel computation of the FEL performance and, for the specific case of the proposed UK’s New Light Source, we illustrate the benefits of this method for the optimization of the average gain length and its variation along the beam pulse. The method can be extended to other sets of objectives, such as power and bandwidth of the FEL.  
slides icon Slides TUABC3 [5.567 MB]  
 
WEAAI1 Bringing Large-scale Analytics to Accelerators EPICS, controls, target, monitoring 116
 
  • N. Malitsky
    BNL, Upton, Long Island, New York, USA
 
  The report presents a new approach for storing and processing both the accelerator control data and the experimental results. It is based on the analysis and consolidation of several modern technologies, such as the EPICS control infrastructure, the SciDB array-oriented data management and analytics platform, the HDF5 file format, and others. The paper overviews the different features of the proposed system and the development of analytics algorithms in the context of the modern light source facilities.  
slides icon Slides WEAAI1 [2.505 MB]  
 
WEAAC4 Design of a Computer Based Resonator-Simulator for Tests of RF Control Systems controls, cavity, resonance, beam-loading 127
 
  • T. Bahlo, C. Burandt, R. Eichhorn, J. Enders, M. Konrad, P.N. Nonn
    TU Darmstadt, Darmstadt, Germany
 
  Funding: supported by the BMBF contract 06DA9024I
In order to test RF control systems for accelerator cavities without being dependent on available prototypes, a resonator-simulator has been developed. The Simulator is based on a Xilinx-VIRTEX-4 FPGA-module and has been configured using MATLAB-Simulink with a special Xilinx-Blockset. The underlying model for this configuration is a parallel RLC-circuit that has been parameterised with common RF-quantities like the resonance frequency, driving frequency, bandwidth and quality factor. This approach allows to simulate the behaviour of normal conducting cavities with quality factors up to 104 as well as superconducting cavities with quality factors up to 109. Besides, it can as well be operated in a continuous-wave as in a pulsed mode. We report on the mathematical model, its digital representation and on the benchmarking against real cavity behaviour.
 
slides icon Slides WEAAC4 [2.540 MB]  
 
WEP01 Simulations for Ion Clearing in an ERL ion, simulation, electron, vacuum 143
 
  • G. Pöplau, A. Markoviḱ, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  Funding: supported by BMBF under contract no. 05K10HRC
Energy Recovery Linacs (ERLs) being the most promising candidates for next-generation light sources put very high demands on preservation of beam brightness and reduction of beam losses. Thus, it is mandatory to avoid the impact of ionized residual gas considered as a source for instabilities in accelerators. Recently, we have presented simulations for the clearing of ionized residual gas with electrodes performed with an upgraded version of software package MOEVE PIC Tracking [1] which is being currently further developed to model the interaction of the ions with the electron beam in presence of external electromagnetic potentials such as the field of clearing electrodes. The tracking code allows for studies on clearing times for electrodes with different voltage as well as detailed studies of the behavior of the ions in the environment of the electrodes. In this paper we take further steps to study possible designs of clearing electrodes. Especially, we will consider the influence of different gas mixtures on clearing times and possible configurations for the clearing electrodes. We use parameters planned for BERLinPro as an example for our studies.
[1] G. Pöplau, A. Meseck, U. van Rienen, Simulation of the Behavior of Ionized Residual Gas in the Field of Electrodes, IPAC 2012, New Orleans.
 
 
WEP07 Traveling Poles Elimination Scheme and Calculations of External Quality Factors of HOMs in SC Cavities cavity, simulation, HOM, factory 152
 
  • T. Galek, T. Flisgen, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Neumann
    HZB, Berlin, Germany
  • B. Riemann
    DELTA, Dortmund, Germany
 
  Funding: Funded by EU FP7 Research Infrastructure Grant No. 227579 and funding approved by German Federal Ministry of Research & Education, Project: 05K10HRC
The main scope of this work is the automation of the extraction procedure of the external quality factors Qext of Higher Order Modes (HOMs) in Superconducting (SC) radio frequency cavities [*]. The HOMs are generated by charged particle beams traveling at the speed of light through SC cavity. The HOMs decay very slowly, depending on localization inside the structure and cell-to-cell coupling, and may influence succeeding charged particle bunches. Thus it is important, at the SC cavity design optimization stage, to calculate the Qext of HOMs. The Traveling Poles Elimination (TPE) scheme has been used on scattering parameters spectra to obtain external quality factors. The combination of Coupled S-Parameter Calculations (CSC) method and vector fitting procedure allows us to study very complicated structures in much better details and almost automated extraction of HOMs' Qext factors. The results are also reasserted by careful eigenmode analysis of the SC cavity. The S-Parameter and eigenmode simulations were performed using CST Microwave Studio.
*Axel Neumann et al., "Status of the HOM Calculations for the BERLinPro Main Linac Cavity", FRAAC3 (this conference)
 
 
WEP14 Design of SRF Cavities with Cell Profiles Based on Bezier Splines cavity, HOM, SRF, coupling 167
 
  • B. Riemann, T. Weis
    DELTA, Dortmund, Germany
  • A. Neumann
    HZB, Berlin, Germany
 
  Funding: This work is funded by BMBF under contract 05K10PEA.
Elliptical cavities have been a standard in SRF linac technology for 30 years. In this work, we present a novel approach [1] using Bezier spline profile curves. By using different degrees of spline curves, the number of free parameters can be varied to suit a given problem (endcell tuning, basecell figures of merit), thus leading to a high flexibility of the spline approach. As a realistic example, a cubic spline SRF multicell cavity geometry is calculated and the figures of merit are optimized for the operational mode. We also present an outline for HOM endcell optimization that can be realized using available 2D solvers.
[1] B. Riemann et al., "SRF multicell cavity design using cubic and higher order spline cavity profiles", T 80.9, Verhandlungen DPG Göttingen 2012
 
 
THP02 Beam Dynamics Simulations Using GPUs simulation, controls, ion, synchrotron 227
 
  • J. Fitzek, S. Appel, O. Boine-Frankenheim
    GSI, Darmstadt, Germany
 
  PATRIC is a particle tracking code used at GSI to study collective effects in the FAIR synchrotrons. Due to the need for calculation-intense simulations, parallel programming methods are being explored to optimize calculation performance. Presently the tracking part of the code is parallelized using MPI, where each node represents one slice of the particles that travel through the accelerator. In this contribution different strategies will be presented to additionally employ GPUs in PATRIC and exploit their support for data parallelism without major code modifications to the original tracking code. Some consequences of using only single-precision in beam dynamics simulations will be discussed.  
 
FRAAI1 Computational Needs for RF Design of Superconducting Cavities cavity, simulation, HOM, SRF 270
 
  • A. Lunin, T.N. Khabiboulline, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with the U.S. Department of Energy.
The computational approaches assure essential guidance and order for the design of a superconducting cavities and cryomodules. The nature of superconductivity requires precise surface electromagnetic fields computation in order to design the cavity shape with a maximum accelerating gradient. At the same time the thickness of the cavity shell is limited by the ability to cool it down the temperature of liquid He, which makes the mechanical stability of the cavity and liquid He vessel assembly extremely important. Hence, it demands a self consistent electro-mechanical optimization in order to minimize microphonics and/or Lorentz force detuning phenomena. Specific challenges are an estimation of RF losses caused by the interaction of the passing beam with SC cavity and a multipactor analysis in the SC cavity and RF coupler. Finally the irregular time structure of a beam train with its own dense spectra may stochastically induce HOM fields in a cavity which results the beam emittance dilution. The study of these effects leads to specifications of SC cavity and cryomodule and can significantly impact on the efficiency and reliability of the superconducting linac operation.
 
slides icon Slides FRAAI1 [8.162 MB]  
 
FRAAC3 Status of the HOM Calculations for the BERLinPro Main Linac Cavity HOM, cavity, dipole, quadrupole 278
 
  • A. Neumann, W. Anders, J. Knobloch
    HZB, Berlin, Germany
  • K. Brackebusch, T. Flisgen, T. Galek, K. Papke, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  Funding: Work supported by Federal Ministry for Research and Education BMBF under contract 05K10HRC
The Berlin Energy Recovery Linac Project (BERLinPro) is designed to develop and demonstrate CW LINAC technology and expertise required to drive next-generation Energy Recovery Linacs (ERLs). Strongly higher order mode (HOM) damped multicell 1.3 GHz cavities are required for the main linac. The cavity under study is an integrated design of the Cornell base cell with JLab HOM waveguide couplers. Modifications to the end group design have also been pursued, including the substitution of one waveguide by a HZB-modified TTF-III power coupler. In this talk the progress in HOM calculations to avoid beam-breakup instabilities for the favored cavity structure will be presented.
 
slides icon Slides FRAAC3 [15.439 MB]  
 
FRAAC4 Astra based Swarm Optimizations of the BERLinPro Injector emittance, cavity, gun, booster 281
 
  • M. Abo-Bakr, B.C. Kuske
    HZB, Berlin, Germany
 
  The Berlin Energy Recovery Linac Project BERLinPro is a compact ERL to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad normalized emittance beam. One of the project challenges is to generate a beam of this kind in the injector part of the machine. Extensive injector optimization studies have been done over the last years. A deep insight in the physics of high brilliance, low energy beams together with single parameter scans allowed for an efficient optimization, resulting in a layout, capable to deliver bunches of the needed charge and dimension. However, changes in the injector components' technical layout, as they are unavoidable in the current stage of the project, may require re-optimizations at any time, if necessary of the whole injector part. To support these work an ASTRA based 'swarm optimization' tool for massive parallel calculations on the institutes Linux computing cluster has been developed. Once the optimization wrapper code is written, results come for free and can help to extend the understanding of the underlying physics. Strategy, procedure and results of the 'swarm optimizations' will be presented in this paper.  
slides icon Slides FRAAC4 [7.286 MB]  
 
FRABI1 Independent Component Analysis (ICA) Applied to Long Bunch Beams in the Los Alamos Proton Storage Ring betatron, injection, space-charge, extraction 294
 
  • J.S. Kolski, R.J. Macek, R.C. McCrady, X. Pang
    LANL, Los Alamos, New Mexico, USA
 
  Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis (PCA), which is the BSS foundation of the well known model independent analysis (MIA), ICA is more robust to noise, coupling, and nonlinearity. ICA of turn-by-turn beam position data has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch, discuss the source signals identified as betatron motion and longitudinal beam structure, and for betatron motion, compare the results of ICA and PCA.  
slides icon Slides FRABI1 [8.062 MB]  
 
FRABI2 Big Data Analysis and Visualization: What Do Linacs and Tropical Cyclones Have in Common? simulation, plasma, laser, electron 299
 
  • E.W. Bethel, S. Byna, J. Chou, E. Cormier-Michel, C.G.R. Geddes, M. Howison, F. Li, P. Prabhat, J. Qiang, O. Rübel, R.D. Ryne, M.F. Wehner, K. Wu
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office and Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
While there is wisdom in the old adage "the two constants in life are death and taxes," there are unavoidable truths facing modern experimental and computational science. First is the growing "impedence mismatch" between our ability to collect and generate data, and our ability to store, manage, and gain understanding from it. The second is the fact that we cannot continue to rely on the same software technologies that have worked well for the past couple of decades for data management, analysis, and visualization. A third is that these complementary activities must be considered in a holistic, rather than balkanized way. The inseperable interplay between data management, analysis, visualization, and high performance computational infrastructure, are best viewed through the lens of case studies from multiple scientific domains, where teams of computer and accelerator scientists combine forces to tackle challenging data understanding problems.
 
slides icon Slides FRABI2 [3.622 MB]